遥感影像舰船识别方法综述
摘要
关键词
全文:
PDF参考
Yongmei Zhang, Ruiqi Li, Zhirong Du, et al. A Ship Detection Method in Infrared Remote Sensing Images Based on Image Generation and Causal Inference[J]. Electronics,2024,13(7).
周书强,耿瑞焕.舰船目标图像特征识别系统研究[J].舰船科学技术,2023,45(5):182-185.
刘方坚,李媛.基于视觉显著性的SAR遥感图像NanoDet舰船识别方法[J].雷达学报,2021,10(6):885-894.
王俊.基于视觉显著性的遥感图像舰船识别方法研究[D].哈尔滨:哈尔滨工程大学,2022.
徐芳,刘晶红,曾冬冬,等.基于视觉显著性的无监督海面舰船检测与识别[J].光学精密工程,2017,25(5):1300-1311.
王保云,杨昆.基于最佳阈值分割的舰船目标识别方法[J].云南师范大学学报(自然科学版),2014,34(4):55-60.
储昭亮,王庆华,陈海林,等.基于极小误差阈值分割的舰船自动识别方法[J].计算机工程,2007(11):239-241+269.
李明杰,刘小飞.复杂海情条件下遥感图像小目标舰船边缘识别[J].舰船科学技术,2021,43(6):70-72.
夏长林,孟庆勋.基于机器学习的舰船监测视频图像模糊边缘识别方法[J].舰船科学技术,2020,42(18):85-87.
Wang Wensheng, Zhang Xinbo, Sun Wu, et al. A Novel Method of Ship Detection under Cloud Interference for Optical Remote Sensing Images[J]. Remote Sensing,2022,14(15):3731-3736.
殷若婷.基于可旋深度网络的宽幅光学影像舰船识别技术[D].北京:北京化工大学,2022.
Linhao Li, Zhiqiang Zhou, Bo Wang, et al. A Novel CNN-Based Method for Accurate Ship Detection in HR Optical Remote Sensing Images via Rotated Bounding Box[J]. IEEE Transactions on Geoscience and Remote Sensing, 2020(5):1-14.
周国庆,黄亮,孙乔.改进Oriented R-CNN的遥感舰船目标细粒度识别方法[J/OL].计算机工程与应用,1-15[2024-05-29].http://kns.cnki.net/kcms/detail/11.2127.tp.20230706.1453.028.html.
Tianwen Zhang, Xiaoling Zhang, Jun Shi, et al. Depthwise Separable Convolution Neural Network for High-Speed SAR Ship Detection[J]. Remote Sensing,2019,11(21):2483-2483.
何民华,张润达,赵胜利.基于Att-DConv的遥感舰船识别方法研究[J].,2024,22(3):24-28.
Liu Jinming, Chen Hao, Wang Yu. Multi-Source Remote Sensing Image Fusion for Ship Target Detection and Recognition[J]. Remote Sensing,2021,13(23):4852-4852.
Haoxiang Zhang, Chao Liu, Jianguang Ma, et al. Time-prior-based stacking ensemble deep learning model for ship infrared automatic target recognition in complex maritime scenarios[J]. Infrared Physics and Technology,2024,137105168.
谢洪途,姜新桥,王国倩,等.基于改进CenterNet的轻量级无锚框SAR图像多尺度舰船识别算法[J].哈尔滨工程大学学报,2024,45(3):504-516.
Weixing Qiu, Zongxu Pan, Jianwei Yang. Few-Shot PolSAR Ship Detection Based on Polarimetric Features Selection and Improved Contrastive Self-Supervised Learning[J]. Remote Sensing,2023,15(7).
Jian Ling, Pu Zhiqi, Zhu Lili, et al. SS R-CNN: Self-Supervised Learning Improving Mask R-CNN for Ship Detection in Remote Sensing Images[J]. Remote Sensing,2022,14(17):4383-4383.
Wang Deyi, Zhang Chengkun, Han Min. FIAD net: a Fast SAR ship detection network based on feature integration attention and self-supervised learning[J]. International Journal of Remote Sensing,2022,43(4):485-1513.
Ciocarlan Alina, Stoian Andrei. Ship Detection in Sentinel 2 Multi-Spectral Images with Self-Supervised Learning[J]. Remote Sensing,2021,13(21):4255-4255.
黄寅礼,孙路,郭亮,等.基于空间变迹滤波旁瓣抑制与有序统计恒虚警率的舰船识别算法[J].雷达学报,2020,9(2):335-342.
胡卫杰,刘颖冰,马飞,等.基于无损压缩和量化感知的SAR舰船识别网络边缘部署[J].信号处理,2012(5):1-10.
陆天宇,徐湛,崔红元,等.大幅宽SAR图像嵌入式舰船实时识别系统设计[J].计算机工程与应用,2024,60(1):301-309.
Tianwen Zhang, Xiaoling Zhang. High-Speed Ship Detection in SAR Images Based on a Grid Convolutional Neural Network[J]. Remote Sensing,2019,11(10):1206.
DOI: http://dx.doi.org/10.12345/bdai.v5i6.18983
Refbacks
- 当前没有refback。
此作品已接受知识共享署名-非商业性使用 4.0国际许可协议的许可。