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Extreme mortality bonds (EMBs), which can transfer the extreme mortality 
risks confronted by life insurance companies into the capital market, 
refer to the bonds whose nominal values or coupons are associated with 
mortality index. This paper first provides the expected value of mortality 
index based on the double exponential jump diffusion (DEJD) model 
under the risk-neutral measure; then derives the pricing models of the 
EMBs with principal reimbursement non-cumulative and cumulative 
threshold respectively; finally simulates the bond prices and conducts a 
parameter sensitivity analysis. This paper finds that the jump and direction 
characteristics of mortality index have significant impacts on the accuracy 
of the EMB pricing.
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1. Introduction

Extreme mortality risk is derived from the situation 
that the actual mortality rate confronted by life insurance 
companies is higher than predicted when underwriting the 
policies. Traditional measures of dealing with the extreme 
mortality risk include using economic capital to absorb 
actual losses, selling policies to spread the risk, raising 
policy rates to transfer costs, and using reinsurance to 
mitigate risk. However, all these four traditional measures 
have their own limitations. Therefore, life insurance secu-
ritization has been utilized to transfer the extreme mortal-
ity risk to the capital market. In 2003, Swiss Reinsurance 
initiated to apply the method of life insurance securiti-
zation to successfully issue the EMBs whose underlying 

assets are life insurance policies. Since then, life insurance 
companies and the academia have been bringing out con-
tinuous innovations on the EMBs.

Researches on the EMBs are mainly concentrated in 
the following three aspects: first, in terms of operational 
mechanism, Cowley and Cummins (2005), Blake et al. 
(2006a; 2006b; 2006c), Cairns et al. (2006) and Chen and 
Cox (2009) study the Vita series EMBs issued by Swiss 
Reinsurance; Bauer and Kramer (2007) analyze the Tartan 
EMBs issued by Scottish Reinsurance; second, in terms 
of mortality index, Dhal et al. (2004), Dowd et al (2006), 
Cox and Lin (2008), and Deng et al. (2012) explore the 
jump characteristic of mortality index; third, in terms of 
pricing model, scholars focus on the imperfect market 
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pricing, which includes Wang transform model (Wang, 
2000; 2002) , Sharp Ratio model (Milevsky et al., 2005), 
and LFC pricing model (Lane, 2000; Chen and Cummins, 
2010).

Although the existing researches on the design and 
pricing method of mortality index have achieved certain 
progress, the accuracy of mortality prediction and the 
rationality of the triggering mechanism still need to be 
improved. Therefore, based on the double exponential 
jump diffusion (DEJD) theory proposed by Kou and 
Wang (2003), employing the research method of Deng et 
al. (2012), this paper first provides the expected value of 
mortality index based on the DEJD distribution under the 
risk-neutral measure, then derives the specific pricing an-
alytic expressions of the EMBs with principal reimburse-
ment non-cumulative and cumulative threshold respec-
tively, and finally simulates the bond prices and conducts 
the parameters sensitivity analysis.

This paper contributes in the following three aspects: 
first, based on the assumption that mortality index follows 
the DEJD process, this paper sufficiently features the di-
rection and frequency of mortality jump, improving the 
accuracy of the EMB pricing; second, this paper illustrates 
a much more explicit expression for pricing the EMBs. 
The results of bond price simulation shows that the EMBs 
with principal reimbursement non-cumulative threshold 
are less risky and thus more attractive to investors; third, 
the parameter sensitivity analysis suggests that the speci-
fication of jump direction and frequency influences bond 
prices significantly, indicating that the description of jump 
characteristics plays a vital role in the accuracy of the 
EMB pricing.

2. Mortality Index Following DEJD Distribution
The pricing of the EMBs is based on the characteriza-

tion of mortality index. Different mortality movements 
result in different bond prices. Considering the changes 
of mortality rate may not be continuous in reality, which 
means the standard Brownian motion cannot sufficiently 
describe the movement of mortality rate, and based on the 
DEJD theory proposed by Kou and Wang (2003; 2004), 
this paper argues that the scope of mortality jump follows 
the DEJD distribution instead of the normal distribution. 
Utilizing the DEJD distribution to describe the movement 
of mortality has two obvious advantages. On one hand, it 
conveniently depicts the mortality jump by simply using 
different parameters under the same exponential distri-
bution; on the other hand, it effectively characterizes the 
asymmetry and exponential property of actual mortality 
jump.

Meanwhile, this paper constructs the mortality index by 
adopting the risk-neutral pricing measure which is widely 

used to price financial derivatives. Based on the risk neu-
tral pricing theory, we can choose a specific risk neutral 
measure, denoted as *Q . Under it, the expected discount 
for all marketable assets is martingale, and we can obtain 
the fair price of any security. By the maximum likelihood 
estimate method, it can implement the risk neutral adjust-
ment to each of the parameters in the mortality time series 
model, and finally reach the market value of the securities 
under the risk neutral hypothesis.

Following the research of Deng et al. (2012) and under 
Lee-Carter (1992) framework, ,x tµ denotes the mortality 
rate of the group whose age is x at time t. The mortality 
rate can be expressed by the age-specific parameters xa , xb
and the mortality time series tk :

( ), ,ln x t x x t x ta b k eµ = + +

(1)
By exponentiating both sides of Equation 1, we can 

get:

, ,exp( )x t x x t x ta b k eµ = + +

(2)
To capture the jump characteristic of the mortality time 

series, tk  should satisfy the following equation:
( )

1
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(3)
( )N t  is the Poisson process with parameter λ , which 

represents the jumping frequency. * *ln( )Y V=  follows the 
double exponential distribution:
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Where 1 2

0,  0,  1,  0,  , 0p q p q λ η η≥ ≥ + = > > . This 
distribution specifies the upward and downward directions 
of mortality jump. When 0y ≥ , it describes the sudden 
surge of mortality rate caused by extreme events. When 

0y ≤ , namely the downward jump, it suggests the reduc-
tion of mortality rate as a result of the economic develop-
ment, the increase of living standards, and the improve-
ment of medical and health conditions.

Under the risk-neutral measure, the mortality rate time 
series satisfies:

( )
* * * *

1
( ) ( ) ( ( 1))

N t
t

i
it

dk dt dW t d V
k

µ λ ξ σ
∗

∗ ∗

=

= − + + −∑

(5)
Utilizing ˆIto lemma to solve the above differential 

equation, we can get:
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Therefore, the expected value of overall mortality in-
dex is:

( ) ( )* *
,

*2 *2 2 1 2
0

1 2

( ) exp exp

1 1             exp ( ) + ( 1)
2 2

x t x x t

x x x x
x x
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∗ ∗

 = ×  

 = + + − − + + −  − + 

(7)
Furthermore, the life table can be divided into x age 

groups, and each of them is allocated with a weight of xW . 
Then the expectation of the overall mortality rate is:
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3. The Pricing Models of Extreme Mortality 
Bonds based on DEJD Model

According to whether the current principal compensa-
tion payment sets the accumulation of past reimbursement 
ratios as the trigger condition, the EMBs can be divided 
into two types of principal reimbursement with non-cu-
mulative threshold bonds and cumulative threshold bonds.

3.1 Pricing Model of Principal Reimbursement 
with Non-cumulative Threshold EMBs

The trigger condition of the EMBs with principal re-
imbursement non-cumulative threshold is solely based on 
the predetermined mortality rate benchmark, i.e. the annu-
al mortality rate benchmark 0k . SPV obeys the following 
principles when compensating life insurance companies: 
(1) if at the time of t, the mortality index tk  surpasses the 
lower bound of the annual mortality rate benchmark (M), 
SPV will start to reimburse the life insurance companies 
using the principal raised from the EMBs investors; (2) 
if the level of mortality rate reaches or even exceeds the 
upper bound of annual mortality rate benchmark (U), SPV 
will compensate life insurance companies with no more 
than the entire principal raised by issuing the EMBs; (3) 
if the mortality level is between the two bounds, SPV 
will utilize the linear interpolation method to evaluate the 
compensation ratio from life insurance companies.

From the perspective of a life insurance company, it in 
fact obtains a series of multi-period call options as the re-
turn for the reinsurance premiums it has paid to the SPV. 
As for bond investors, if trigger events do not happen dur-
ing the specified period, they will acquire the agreed in-
terest and principal; if extreme events do occur, the bond 
buyers will lose some or all of the principals. The Vita I 
EMB of Swiss Reinsurance is a typical representative for 
the EMB with principal reimbursement non-cumulative 
threshold, which means the year by year recalculation of 

the annual withdrawal and the compensation ratio for the 
life insurance companies from the SPV, and no relevance 
to cumulative compensation ratios in the past.
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Figure 1 The Reimbursement Mechanism of the Non-cumulative Threshold EMBs

Figure 1 shows the reimbursement mechanism of the EMBs with principal reimbursement
non-cumulative threshold. The black solid line shows the relationship between the principal

compensation ratio and the current mortality rate for each year. Let tq be the mortality rate at the

time of t, then the principal compensation ratio tloss for SPV to compensate the life insurance

company is:
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Where Par is the face value of the bond, and fr is the risk-free interest rate. Under

the risk neutral measure, at maturity date T, the pricing formula of the EMBs with
principal reimbursement non-cumulative threshold can be written as:
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Where Par is the face value of the bond, and fr  is the 
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3.2 Pricing Model of Principal Reimbursement 
with Cumulative Threshold EMBs

Due to the fact that mortality rates for successive years 
generally have sequential correlations, the calculation of 
mortality rate is usually based on the historical mortality 
rates. To properly settle the problem of sequential corre-
lations, Scottish Reinsurance issued the Tartan EMBs by 
designing a double-trigger in 2006. The first trigger con-
dition is the same as that of the non-cumulative threshold 
EMBs mentioned above, i.e. whether the mortality index 
surpasses the lower bound of benchmark (M); The second 
trigger condition is whether the principal compensation 
ratio which is calculated from Formula (9) is greater than 
the accumulative principal compensation ratio (Accumu-
lated Loss, 1tAL − ), which is the sum of the compensation 
ratios in last periods.
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Figure 2 The Reimbursement Mechanism of the Cumulative Threshold EMBs

In Figure 2, the black solid line represents the relationship between the accumulated principal
compensation ratio of each period and the level of mortality in current period. It can be noted that
the accumulated compensation ratio for this period is between the accumulated compensation ratio
for the last period and 100%. Only when the current compensation ratio exceeds the cumulative
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Figure 2. The Reimbursement Mechanism of the Cumula-
tive Threshold EMBs

In Figure 2, the black solid line represents the relation-
ship between the accumulated principal compensation 
ratio of each period and the level of mortality in current 
period. It can be noted that the accumulated compensation 
ratio for this period is between the accumulated compen-
sation ratio for the last period and 100%. Only when the 
current compensation ratio exceeds the cumulative ratio 
threshold for the last period 1tAL − , will SPV reimburse us-
ing the principal. That is to say, at the time of t, SPV will 
pay back to life insurance companies at the scale of the 
accumulated compensation ratio tAL :
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When the accumulated principal payment ratio hasn’t 

yet reached 100% in the last period, the current principal 
compensation ratio tloss  is:
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When the bond matures at T, SPV will pay the princi-

pal back to all the bond investors at the scale of TP : 
1T TP AL= −

(14)
Therefore the pricing formula of the EMBs with princi-

pal reimbursement cumulative threshold is:

( )
( )

- *

- *
1

- *
1

*
-

11

( )

1

1

( )
1

f

f

f

f

r T

r T
t t

r T
t t

Tr T t
t

P e E FV

e E AL AL

e E AL AL

E MPar e AL dt
U M
µ

−

−

−

=

 = − − 
 = − − 

  −
= ⋅ − −  −   

∫

(15)
In conclusion, the biggest difference between the two 

types of the EMBs lies in whether the principal compen-
sation ratio over each mortality assessment period (usually 
a year) sets the accumulated compensation ratio of last 
period as the threshold of its lower bound. For the EMBs 
with principal reimbursement non-cumulative threshold, 
principal compensation ratios in each year are not relat-
ed. Once the mortality rate exceeds the lower bound of 
benchmark (M), the principal compensation ratios will 
increase ( )1 %U M−  with every 1% increase in mortality in-
dex. At the same time, if the sum of independent principal 
reimbursement ratios accumulates to surpass 100% before 
maturity, SPV will not pay for the bond investors.

However, for the EMBs with principal reimbursement 
cumulative threshold, not only will the current level of 
mortality exceed the lower bound of benchmark (M), but 
the proportion of the principal reimbursement ratio should 
surpass the accumulated proportion in last period 1tAL − as 
well. Only under this circumstance, SPV will compensate 
to life insurance companies. In other words, only when the 
extreme mortality rate is large enough in the second year 
and meets the double trigger conditions, will the bond 
investors suffer principal losses, which is more secured 
to the interests of bond investors. The pricing models of 
these two types of the EMBs are derived from their corre-
sponding reimbursement mechanisms.
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4. Numerical Analysis

4.1 The Estimation of Extreme Mortality Bond 
Prices

Assuming that one extreme mortality bond has a ma-
turity of 3 years (T = 3) and with a face value of 1 billion 
RMB (Par = 1000000000). This bond was issued at the 
end of 2013 and will expire at the end of 2016. Risk-free 
interest rate, represented by the one-year Shibor interest 
rate, is 0.044. The Benchmark of mortality rate 0µ  in 2013 
is 0.00743. The lower bound of mortality index (M) is 1.1 
times of the mortality rate in the base year, and the upper 
bound (U) is 1.2 times of the mortality rate in the base 
year. This paper assumes 0.05AL =  in the pricing formula 
of the EMBs with principal reimbursement cumulative 
threshold. Table 1 shows the parameters of annual mortal-
ity index. xW  is a weight associated with the age category.

Table 1. The Parameters of Annual Mortality Index

Age Scope xW xa xb

<1 0.013818 -3.4087 0.1455

1-4 0.055317 -6.2254 0.1960

5-14 0.145565 -7.1976 0.1942

15-24 0.138646 -6.2957 0.0994

25-34 0.135573 -5.9923 0.1044

35-44 0.162613 -5.4819 0.0855

45-54 0.134834 -4.7799 0.0608

55-64 0.087247 -4.0137 0.0468

65-74 0.066037 -3.2347 0.0426

75-84 0.044842 -2.4196 0.0409

>85 0.015508 -1.6119 0.0290

Table 2 shows the estimated results of the parameters 
involved in the pricing model (Deng et al., 2012).

Table 2. The Estimates of Parameters

0k *α *σ *p *γ *
1η

*q *
2η *λ

-10.302 -0.2 0.31 0.035 -1.25 0.89 0.065 0.93 0.029

Based on the above pricing models of the EMBs, the 
bond prices of the two types can be calculated and sum-
marized in Table 3. Comparing the estimated prices of the 
two EMBs, we can find that the price of the EMB with 
non-cumulative threshold is lower than that of the EMBs 
with cumulative threshold, which indicates that the EMBs 
with non-cumulative threshold are more risky than the cu-
mulative ones, and demand more risk premiums.

Table 3. The Estimated Results of the EMB Prices

EMB Type Principal Non-Cumulative Principal Cumulative

EMB Price 4.7260 910× 4.9087 910×

4.2 Parameter Sensitivity Analysis

Figures 1 to 6 plot the relationship between the pric-
es of the EMBs and the main parameters in the pricing 
models respectively. As in Figure 1 and 2, the parameters 
p* and q* which describe the directions of mortality jump 
have significant impacts on the EMB prices. The upward 
jump parameter p* is negatively correlated with the bond 
prices; however, the downward jump parameter q* is pos-
itively correlated with the bond prices. It suggests that 
when the probability of upward jump rises, the mortality 
risk in the future will increase, higher compensation bond 
holders will demand and lower bond prices will be. On 
the contrary, when the probability of downward jump ris-
es, the mortality risk in the future will decrease, the lower 
compensation bond holders will demand and higher bond 
prices will be.

Figure 1. The Relation between Price P and p*

Figure 2. The Relation between Price P and q*

Moreover, Figure 3 shows that the frequency parameter 
of mortality jump λ also exerts a significant sensitivity im-
pact. When the probability of upward jump is smaller than 
the downward jump, the frequency parameter λ and the 
bond prices are linearly positively correlated. This proves 
that the frequency of mortality jump plays a significant 
role in the accuracy of pricing the EMBs. Furthermore, 
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after the distinction of jump directions, both the frequency 
and direction will influence the mortality risk at the same 
time, rather than an increase in jump frequency will cer-
tainly lead to the increase in the mortality risk when only 
considering the positive jump. In addition, Figure 4 shows 
that the bond price is negatively correlated with the pa-
rameter *α , and has a significant sensitivity. 

Figure 3. The Relation between Price P and *λ

Figure 4. The Relation between Price P and *α

Finally, Figure 5 and 6 reveal that parameters 1η  and 2η  
which describe the jump scope have a weak correlation 
and sensitivity relationship with the bond prices. This 
phenomenon happens after distinguishing the directions 
of mortality jump.

From the above analysis, it’s not hard to notice that 
when considering the more dedicate descriptions of mor-
tality jump, especially the distinction of the jump direc-
tions, can more effectively measure mortality risk and 
increase the rationality and accuracy of the EMB pricing. 
Otherwise, only considering upward jump or not distin-
guishing jump directions is likely to lead to bigger errors 
in the prediction of mortality index, thus affecting the ac-
curacy of the EMB pricing.

Figure 5. The Relation between Price P and 
*

1η

Figure 6. The Relation between Price P and 
*
2η

5. Conclusion

Given the large exposure of extreme mortality risk 
faced by life insurance companies, how to manage the 
extreme mortality risk for them has become a hot topic. 
Since accurately pricing the EMBs is vital to the success 
of their issuing in the capital market, the focus of this 
paper is to derive and analyze the EMB pricing model. 
This paper first introduces a stochastic diffusion model 
with a double exponential jump diffusion (DEJD) process 
for mortality time-series. Then, this paper applies the risk 
neutral pricing theory to derive the pricing models for 
the EMBs with principal reimbursement non-cumulative 
and cumulative threshold respectively. The prices of the 
cumulative threshold EMBs are higher than those of the 
non-cumulative threshold EMBs, thus more appealing 
for risk-averse investors. Finally, the results of parameter 
sensitivity analysis indicate that the mortality jump de-
scription, especially the distinction of jump directions, has 
a significant impact on the rationality of the EMB pricing.
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