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This paper analyzes the relationship between the risk factor of each stock 
and the portfolio’s risk based on a small portfolio with four U.S. stocks, 
and the reason why these risk factors can be regarded as a market invari-
ant. Then, it evaluates the properties of the convex and coherent risk indi-
cators of the capital requirement index composed of VaR and ES, and use 
three methods(the historical estimation method, boudoukh’s mixed meth-
od and Monte Carlo method) to estimate the risk measurement indicators 
VaR and ES respectively based on the assumption of multivariate normal 
distribution’ risk factors and multivariate student t-copula distribution’s 
one, finally it figures out that these three calculation results are very close.
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1. Exploratory Analysis of Risk Factors

Section 1 gives a basic description of statistical 
properties of risk factors Xi for all four assets and 
an explanation of how log-returns reflect the riski-

ness of both individual asset and the whole portfolio. And 
it presents reasons why risk factors are market invariants 
based on the method originated by Attilio Meucci[1].

From table 1, we can verify clearly that the average 
log-returns of stock 1 and stock 2 are negative, whereas 
stock 3 and 4 have positive average risk factors, which 
means the return of asset 1 and asset 2 have lower averag-
ing benefits[4].

Table 1. Mean, Variance, Min, Max, Quartiles of 4 Risk 

Factors

Risk fac-
tors X1 X2 X3 X4

Mean -8.493145e-05 -8.935721e-05 8.845965e-05 8.474993e-05

Variance 0.0003200096 0.0002307729 0.0002749404 0.0007659206

Minimum -0.1155822 -0.150271 -0.180606 -0.2876821

Maximum 0.1572141 0.1586307 0.1325256 0.2586502

1st quartile -0.0082076046 -0.0068018315 -0.007854612 -0.01035043

2nd quartile 0.0005981756 -0.0001143053 0.000000000 0.00000000

3rd quartile 0.0084305330 0.0068594796 0.008084315 0.01040593
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For variances, the smallest is for stock 2 and the largest 
is for stock 4. They indicate that the second stock is the 
most stable one during this period but the fourth oscillates 
more frequently and represents high riskiness. Stock 4 is 
the riskiest one among these four assets. The more propor-
tion of stock 4 results in riskier portfolio.

The maximal log return (0.2586502) is for stock 4. It 
is apparently higher than those of other three assets. From 
the combination of the maximum and minimum of stock 
4, we can realize that it is the riskiest one as well. Since 
stock 4 occupies 46.67% of the whole portfolio, the fluc-
tuations of asset 4 connect to the riskiness of portfolio 
closely.

Table 2. Covariances between risk factors

Covariance X1 X2 X3 X4

X1 0.0003200096 0.0002054446 0.0001573925 0.0001872091

X2 0.0002054446 0.0002307729 0.0001374079 0.0001568926

X3 0.0001573925 0.0001374079 0.0002749404 0.0001914346

X4 0.0001872091 0.0001568926 0.0001914346 0.0007659206

From table 2, we can see that all covariances are pos-
itive. It means that when one log return increases, other 
three will increase as well. All four stocks show the same 
trend of riskiness changes. And X1 is more correlated to 
X2. The connection between X3 and X4 is closer. For the 
whole portfolio, the riskiness changes with same direction 
of risk factor changes.

Modelling the stock market requires there to be a re-
petitive statistical behavior, such that the stock prices are 
independent and identically distributed (i.i.d) over time, 
this is called in market invariants. If the log-returns of 
the stocks, Xi for i = 1,2,3,4, are market invariant then it 
implies that any shocks to the market will be short-term 
and the readjust to market behavior over time. Also, it 
allows predictions to be made about future outcomes with 
a certain confidence level. According to Meucci[1] (2005) 
there are two simple graphical tests we can use detect 
invariance in our time series. In the first test, we divide 
the time series Xi into two separate series, then we plot 
histograms of the two series. If Xi is market invariant then 
the histogram of the 1st half-sample should resemble the 
histogram of the 2nd half-sample as shown in figure 1.

The second test for invariance does not require splitting 
the data but rather plotting the entire time series against its 
lagged values. If is market invariant then the scatter plots 
for i = 1,2,3,4 should resemble a circular cloud (Meucci[1], 
2005). In figure 2 we see that this is the case.

Figure 1. Stock Logarithmic Returns

Figure 2. Scatter plot with lags of log-returns for Stocks: 1, 
2, 3, 4

Figure 2: Testing for Normality: In theory, total re-
turns are assumed to be log-normally distributed, there-
fore, if that is true then we can also assume that the 
log-returns, Xi follows a normal distribution (Meucci, 
2005). We can check if Xi is normally distributed by 
using a normal Q-Q plot which plots the standardized 
empirical quantiles of the observed data against the 
quantile of a standard normal random variable. Nor-
mality on a Q-Q plot is represented by a dense scatter 
of points at 45◦ around the line of best fit. In figure 3 
we can see that our Q-Q plots show a tight variability 
around the middle of the data but there are great devia-
tion on the tail ends. Under regular circumstances these 
Q-Q plots would allow us to reject the assumption of 
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normality but in this case the greater variability at the 
tail ends of the points is caused by volatility clustering, 
which means that volatility is higher in some periods 
such as the 2008 financial crisis. To confirm whether 
or not our log-returns Xi follow normally distributed, 
we can use the Jarque-Bera normality test which deter-
mines if Xi have the skewness and kurtosis that match-
es a normal distribution. The test yielded a p-value < 
2.2 × 10−16 for each log-returns, therefore we cannot 
assume Xi to be normally distributed.

Figure 3. Normal Q-Q plots of log-returns for Stocks: 1, 2, 
3,4

2. Estimating Value at Risk & Expected 
Shortfall Using Historical-Estimation Method

In this section, we apply the historical-estimation method 
and hybrid method in the paper by Boudoukh et al (1998) 
in section 2 to calculate the value at risk (VaR) and ex-
pected shortfall (ES) at the confidence level 99.9%.[2]

Value at Risk (VaR) and Expected Shortfall (ES) are 
commonly used risk measures in analyzing market risk. 
VaR and ES both measures the potential loss of our port-
folio over a period of time for a given confidence interval. 
VaR is the worse-case loss of our portfolio over a period 
of time, whereas ES is the average loss that occur after the 
worse-case VaR threshold. It could also be used in calcu-
lating the minimal capital requirement that our investment 
fund is required to hold to have protection against the 
risks we are taking on.

In this part we will take a look at computing VaR and 
ES using the historical-estimation method. This method 
uses historical data for Xi and an estimate for the prob-
ability distribution of the loss based on the empirical 
distribution. There are no assumptions on the probability 

distribution of Xi made, hence it is robust to non-normal-
ity and does not affect the results. For a confidence level 
α = 99%, we can compute the VaR0.99(L) and ES0.99(L) for 
the portfolio loss using historical estimation method in the 
following steps:

(1 )  At  t ime  t ,  co l l ec t  the  h i s to r i ca l  da tase t 
( , )X X X Xt n

i i i i
− + ∆( 1 ,) … t t t− ∆ −∆2 , , , for i =1,2,3,4 and where n 

= 2716 for this portfolio sample size and ∆ = 1 day is the 
fixed distance between two consecutive time instants.

(2) Now use the historical estimation method to com-
pute portfolio loss in terms of the Xi using the following 
formula:

Which results in a dataset of losses: L l X

t = [ t ] 	( )t n
i
− +( 1) ,  

where l[t] is the loss operator at time t. It is assumed that 
the losses during the different time periods are (i.i.d).

(3) Sort the absolute value of the losses in ascending 

order such that L L 

n,n 1,n≤…≤ .
(4) Now, the VaR0.99(L) and ES0.99(L) can be computed 

using:

For VaR this means that our worst-case loss of our 
portfolio over 1 day is $84,785 with a 99% confidence 
level. If VaR is exceeded then the maximum expected loss 
for the portfolio is $122,667.80 with a 99% confidence 
level.

The other new method, which is called hybrid meth-
od in the paper by Boudoukh et al. (1998) [5], combines 
two approaches to VaR estimation: Risk Metrics[6] and 
historical estimation method, and hence hybrid method is 
partly alike historical estimation method. Just like the his-
torical estimation method, the new method firstly orders 
the returns over a certain period from lowest to highest. 
Difference between two methods is that hybrid method as-
signs exponentially declining weights to historical returns 
while historical estimation method gives equal weights to 
each observed return. Meaning behind the new attributing 
method is that recent data have more impact on comput-
ing latest values of risk measures. Because of the different 
way of attributing weights, obtaining VaR at a certain sig-
nificance level using same returns involves different num-
ber of observations for two methods. The exact number is 
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up to how recently the extreme low returns are observed. 
What’s more, historical estimation method does not con-
sider linear interpolation usually while hybrid approach 
does.

Since the hybrid approach combines historical estima-
tion method and exponential smoothing method, it inher-
its their advantages. Like historical estimation, hybrid 
method does not take assumptions before being used. 
Like exponential smoothing, the new approach uses ex-
ponential declining weights on past data, allowing users 
to capture the cyclical movement of return volatility and 
assigning more power to recent data, which is more real-
istic. It is worth mentioning that some empirical results 
presented that the new method provides an absolute error 
which is much lower than that of historical estimation 
approach and of exponential smoothing approach. Addi-
tionally, in the paper by Boudoukh et al. (1998), the au-
thor did a test and the results showed that the new meth-
od offers the lowest level of autocorrelation between 
assets and parameters among the three approaches. A 
very important advantage is that hybrid method provides 
improvements on the basis of historical estimation and 
exponential smoothing methods without increasing com-
putational complexity, data intensity and programming 
difficulty.

The role of λ: In computation of time weights, λ is ac-
tually a decay factor. In the initial step of hybrid method, 
we denote lt as the realized loss from t-1 to t. For each 
of the most recent K losses, lt, lt-1,...,lt-(K-1)we assign the 
weights:

Where λ ∈ (0,1) is fixed. As we can see, when λ gets 
larger in interval (0,1), the weights given to data observed 
further in the past will be smaller while that assigned to 
more recent data will be greater. That means returns ob-
served recently have more power to affect the risk mea-
surement.

We choose λ = 0.98 when implementing the algorithm. 
The reason is that Boudoukh et al. (1998) fixed λ to be 0.98 
when he gave an example for how to use hybrid method. 
Besides, figure 4 shows that decay factors for equity indi-
ces across different countries are close to 0.98 and because 
stocks are close to equity indices to some extent, we take 
equity indices as representative here. And When we take 
99% as the value of the confidence level α, and let λ = 0.98, 
the results of VaR0.99(L) and ES0.99(L) are $57,863.65 and 
$66,129.70 respectively.

Figure 4. Optimal decay factors based on volatility fore-
casts (Risk Metrics technology document by JP Morgan, 

1996)

3. The Capital Requirement of the Portfolio

We consider using formulas C β*VaR 	(1 β)ES= + −0.99 0.99  
to calculate the capital requirement of the portfolio, then 
we identify whether the capital requirement C is a risk 
measure or not and shows its properties ( For simplicity, 
let β=0.3 )[7] [8].

3.1 Monotonicity 

The capital requirement C is a Risk measure. Let L1 and 
L2 be two random variables, we can get that:

C(L1) = 0.3V aR0.99(L
1) + 0.7ES0.99(L

1)

C(L2) = 0.3V aR0.99(L
2) + 0.7ES0.99(L

2)

We know that VaRα and ESα are risk measure, which 
means they satisfied with monotonicity. Thus if L1 ≤ L2, 
it is easy to know:

 0.3V aR0.99(L1) + 0.7ES0.99(L1) ≤ 0.3VaR0.99(L2) + 0.7ES-
0.99(L2)

C(L1) ≤ C(L2)

Thus the capital requirement C satisfies Monotonicity, 
and the capital requirement C is a Risk measure.

3.2 Translation Invariance

The capital requirement C is a Monetary Risk measure. 
Let L be a random variable, fix m ∈ R, we can get

C(L + m) = 0.3V aR0.99(L + m) + 0.7ES0.99(L + m)

As we know, VaRα and ESα are translation invariance, 
so:
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C(L + m) = 0.3V aR0.99(L + m) + 0.7ES0.99(L + m)

	  = 0.3(V aR0.99(L) + m) + 0.7(ES0.99(L) + m)

	  = 0.3V aR0.99(L) + 0.3m + 0.7ES0.99(L) + 0.7m

	  = 0.3V aR0.99(L) + 0.7ES0.99(L) + m

	  = C(L) + m

Thus the capital requirement C satisfies Translation 
invariance, and the capital requirement C is a Monetary 
Risk measure.

3.3 Convex risk Measure 

The capital requirement C is not a Convex risk measure. 
Let L1 and L2 be two random variables, fix λ ∈ R, we can 
get:

C(λL1 + (1 − λ)L2) = 0.3VaR0.99(λL
1 + (1 − λ)L2) + 0.7ES-

0.99(λL
1 + (1 − λ)L2).

As we know, ESα satisfies Convexity but V aRα not.
Thus we cannot get C(λL1 + (1 − λ)L2) ≤ λC(L1) + (1 − λ)
C(L2), the capital requirement C does not satisfy Con-
vexity, and the capital requirement C is not a Convex risk 
measure.

3.4 Coherent risk Measure 

The capital requirement C is not a Coherent risk measure, 
but it statisfies positively homogeneous. Let L be a ran-
dom variable, fix c ∈ (0,+∞), we can get:

C(cL) = 0.3V aR0.99(cL) + 0.7ES0.99(cL)

As we know, V aRα and ESα are both Positive Homo-
geneity, so:

C(cL) = 0.3V aR0.99(cL) + 0.7ES0.99(cL)

           = 0.3cV aR0.99(L) + 0.7cES0.99(L)

           = cC(L),

thus the capital requirement C satisfies Positive Homo-
geneity. But as the capital requirement C is not a Coherent 
risk measure, as the capital requirement C does not satisfy 
Convexity[4].

4. Monte Carlo Methods

In this part, the estimations of VaR0.99(Lt+1), ES0.99(Lt+1) 

and C(L t+1) by using Monte Carlo simulation meth-
od are presented. And we compare these estimations 
with the results of historical estimation method. The 
remainder of this thesis is about that we assume the 
dependence structure between risk factors of the vector 
Xt+1 can be described as Student’s t-copula instead of 
Gaussian copula. Then we apply a discount factor 0.9 
to estimate the VaR and ES. At last, with a calibrated 
Student’s t-copula and 10000 simulations, we compute 
a new capital C. We assume that the vector Xt+1 of risk 
factor changes between t and t+1 follows a multivariate 
normal distribution:

Xt+1 ∼ N(µ,Σ)

In this case, µ is the mean vector of Xt+1, Σ is the cova-
riance matrix for Xt+1. We did 10,000 simulations, and find 
out VaR0.99(Lt+1) = 75454.38, ES0.99(Lt+1) = 85630.77 so 
that we got the result:

We can find that the VaR0.99(Lt+1) and ES0.99(Lt+1) is big-
ger than multivariate normal distribution’s results, cause 
the student-t copula has a sharper peak and heavier tail 
than the normal distribution, which means that as a result, 
the probability of extreme values is greater than that of 
normally distribution. Also, this Monte Carlo method can 
be used for various distributions of risk factors Xt+1, and it 
has strong ability to deal with nonlinear and non-normal 
problems. So that it can be applied flexible when model 
changes, and we can apply more models to fit the data to 
do a more reasonable prediction. [9]

5. Conclusion

In this paper, we presented three different methods for es-
timating VaR and ES of our small portfolio of four stocks 
during a given time period. The implementation process 
of each approach was discussed along with their advan-
tages and disadvantages. This was done for the purpose 
was calculate the regulatory capital requirement for the 
investment portfolio, which the capital our investment 
portfolio needs to hold in reserves to have adequate pro-
tection against the risks we take on as an investment fun 
and shocks in the economy.
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