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This paper analyzes the relationship between the risk factor of each stock 
and	the	portfolio’s	risk	based	on	a	small	portfolio	with	four	U.S.	stocks,	
and the reason why these risk factors can be regarded as a market invari-
ant.	Then,	it	evaluates	the	properties	of	the	convex	and	coherent	risk	indi-
cators of the capital requirement index composed of VaR and ES, and use 
three	methods(the	historical	estimation	method,	boudoukh’s	mixed	meth-
od	and	Monte	Carlo	method)	to	estimate	the	risk	measurement	indicators	
VaR and ES respectively based on the assumption of multivariate normal 
distribution’ risk factors and multivariate student t-copula distribution’s 
one,	finally	it	figures	out	that	these	three	calculation	results	are	very	close.
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1. Exploratory Analysis of Risk Factors

Section 1 gives a basic description of statistical 
properties of risk factors Xi for all four assets and 
an	explanation	of	how	log-returns	reflect	the	riski-

ness	of	both	individual	asset	and	the	whole	portfolio.	And	
it presents reasons why risk factors are market invariants 
based on the method originated by Attilio Meucci[1].

From table 1, we can verify clearly that the average 
log-returns of stock 1 and stock 2 are negative, whereas 
stock 3 and 4 have positive average risk factors, which 
means the return of asset 1 and asset 2 have lower averag-
ing	benefits[4].

Table 1. Mean, Variance, Min, Max, Quartiles of 4 Risk 

Factors

Risk fac-
tors X1 X2 X3 X4

Mean -8.493145e-05 -8.935721e-05 8.845965e-05 8.474993e-05

Variance 0.0003200096 0.0002307729 0.0002749404 0.0007659206

Minimum -0.1155822 -0.150271 -0.180606 -0.2876821

Maximum 0.1572141 0.1586307 0.1325256 0.2586502

1st quartile -0.0082076046 -0.0068018315 -0.007854612 -0.01035043

2nd quartile 0.0005981756 -0.0001143053 0.000000000 0.00000000

3rd quartile 0.0084305330 0.0068594796 0.008084315 0.01040593
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For variances, the smallest is for stock 2 and the largest 
is	for	stock	4.	They	indicate	that	 the	second	stock	is	 the	
most stable one during this period but the fourth oscillates 
more	frequently	and	represents	high	riskiness.	Stock	4	is	
the	riskiest	one	among	these	four	assets.	The	more	propor-
tion	of	stock	4	results	in	riskier	portfolio.

The	maximal	log	return	(0.2586502)	is	for	stock	4.	It	
is	apparently	higher	than	those	of	other	three	assets.	From	
the combination of the maximum and minimum of stock 
4,	we	can	realize	that	it	 is	the	riskiest	one	as	well.	Since	
stock	4	occupies	46.67%	of	the	whole	portfolio,	the	fluc-
tuations of asset 4 connect to the riskiness of portfolio 
closely.

Table 2. Covariances between risk factors

Covariance X1 X2 X3 X4

X1 0.0003200096 0.0002054446 0.0001573925 0.0001872091

X2 0.0002054446 0.0002307729 0.0001374079 0.0001568926

X3 0.0001573925 0.0001374079 0.0002749404 0.0001914346

X4 0.0001872091 0.0001568926 0.0001914346 0.0007659206

From table 2, we can see that all covariances are pos-
itive.	It	means	that	when	one	log	return	increases,	other	
three	will	increase	as	well.	All	four	stocks	show	the	same	
trend	of	riskiness	changes.	And	X1	is	more	correlated	to	
X2.	The	connection	between	X3	and	X4	is	closer.	For	the	
whole portfolio, the riskiness changes with same direction 
of	risk	factor	changes.

Modelling the stock market requires there to be a re-
petitive statistical behavior, such that the stock prices are 
independent	and	identically	distributed	(i.i.d)	over	 time,	
this	 is	called	 in	market	 invariants.	 If	 the	 log-returns	of	
the stocks, Xi for i = 1,2,3,4, are market invariant then it 
implies that any shocks to the market will be short-term 
and	 the	 readjust	 to	market	behavior	over	 time.	Also,	 it	
allows predictions to be made about future outcomes with 
a	certain	confidence	level.	According	to	Meucci[1] (2005)	
there are two simple graphical tests we can use detect 
invariance	in	our	 time	series.	In	 the	first	 test,	we	divide	
the time series Xi into two separate series, then we plot 
histograms	of	the	two	series.	If	Xi	is	market	invariant	then	
the histogram of the 1st half-sample should resemble the 
histogram	of	the	2nd	half-sample	as	shown	in	figure	1.

The second test for invariance does not require splitting 
the data but rather plotting the entire time series against its 
lagged	values.	If	is	market	invariant	then	the	scatter	plots	
for	i	=	1,2,3,4	should	resemble	a	circular	cloud	(Meucci[1], 
2005).	In	figure	2	we	see	that	this	is	the	case.

Figure 1. Stock Logarithmic Returns

Figure 2.	Scatter	plot	with	lags	of	log-returns	for	Stocks:	1,	
2, 3, 4

Figure	2:	Testing	 for	Normality:	 In	 theory,	 total	 re-
turns are assumed to be log-normally distributed, there-
fore, if that is true then we can also assume that the 
log-returns,	Xi	 follows	a	normal	distribution	 (Meucci,	
2005).	We	can	check	 if	Xi	 is	normally	distributed	by	
using a normal Q-Q plot which plots the standardized 
empirical quantiles of the observed data against the 
quantile	of	 a	 standard	normal	 random	variable.	Nor-
mality on a Q-Q plot is represented by a dense scatter 
of	points	at	45◦	around	 the	 line	of	best	fit.	 In	figure	3	
we can see that our Q-Q plots show a tight variability 
around the middle of the data but there are great devia-
tion	on	the	tail	ends.	Under	regular	circumstances	these	
Q-Q plots would allow us to reject the assumption of 
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normality but in this case the greater variability at the 
tail ends of the points is caused by volatility clustering, 
which means that volatility is higher in some periods 
such	as	 the	2008	 financial	 crisis.	To	confirm	whether	
or not our log-returns Xi follow normally distributed, 
we can use the Jarque-Bera normality test which deter-
mines if Xi have the skewness and kurtosis that match-
es	a	normal	distribution.	The	 test	yielded	a	p-value	<	
2.2	×	10−16 for each log-returns, therefore we cannot 
assume	Xi	to	be	normally	distributed.

Figure 3.	Normal	Q-Q	plots	of	log-returns	for	Stocks:	1,	2,	
3,4

2. Estimating Value at Risk & Expected 
Shortfall Using Historical-Estimation Method

In this section, we apply the historical-estimation method 
and	hybrid	method	in	the	paper	by	Boudoukh	et	al	(1998)	
in	section	2	 to	calculate	 the	value	at	risk	(VaR)	and	ex-
pected	shortfall	(ES)	at	the	confidence	level	99.9%.[2]

Value	at	Risk	(VaR)	and	Expected	Shortfall	 (ES)	are	
commonly	used	risk	measures	 in	analyzing	market	risk.	
VaR and ES both measures the potential loss of our port-
folio	over	a	period	of	time	for	a	given	confidence	interval.	
VaR is the worse-case loss of our portfolio over a period 
of time, whereas ES is the average loss that occur after the 
worse-case	VaR	threshold.	It	could	also	be	used	in	calcu-
lating the minimal capital requirement that our investment 
fund is required to hold to have protection against the 
risks	we	are	taking	on.

In this part we will take a look at computing VaR and 
ES	using	 the	historical-estimation	method.	This	method	
uses historical data for Xi and an estimate for the prob-
ability distribution of the loss based on the empirical 
distribution.	There	are	no	assumptions	on	the	probability	

distribution of Xi made, hence it is robust to non-normal-
ity	and	does	not	affect	the	results.	For	a	confidence	level	
α	=	99%,	we	can	compute	the	VaR0.99(L)	and	ES0.99(L)	for	
the portfolio loss using historical estimation method in the 
following	steps:

(1 ) 	At 	 t ime 	 t , 	 co l l ec t 	 the 	 h i s to r i ca l 	 da tase t	
( , )X X X Xt n

i i i i
− + ∆( 1 ,) … t t t− ∆ −∆2 , , , for i =1,2,3,4 and where n 

= 2716 for this portfolio sample size and ∆ = 1 day is the 
fixed	distance	between	two	consecutive	time	instants.

(2)	Now	use	the	historical	estimation	method	to	com-
pute portfolio loss in terms of the Xi using the following 
formula:

Which	results	in	a	dataset	of	losses:	 L l X

t = [ t ] 	( )t n
i
− +( 1) ,  

where l[t]	 is	the	loss	operator	at	time	t.	It	 is	assumed	that	
the	losses	during	the	different	time	periods	are	(i.i.d).

(3)	Sort	 the	absolute	value	of	 the	losses	 in	ascending	

order such that L L 

n,n 1,n≤…≤ .
(4)	Now,	the	VaR0.99(L)	and	ES0.99(L)	can	be	computed	

using:

For VaR this means that our worst-case loss of our 
portfolio	over	1	day	 is	$84,785	with	a	99%	confidence	
level.	If	VaR	is	exceeded	then	the	maximum	expected	loss	
for	 the	portfolio	 is	$122,667.80	with	a	99%	confidence	
level.

The other new method, which is called hybrid meth-
od	in	 the	paper	by	Boudoukh	et	al.	 (1998)	 [5], combines 
two	approaches	 to	VaR	estimation:	Risk	Metrics[6] and 
historical estimation method, and hence hybrid method is 
partly	alike	historical	estimation	method.	Just	like	the	his-
torical	estimation	method,	the	new	method	firstly	orders	
the	returns	over	a	certain	period	from	lowest	 to	highest.	
Difference between two methods is that hybrid method as-
signs exponentially declining weights to historical returns 
while historical estimation method gives equal weights to 
each	observed	return.	Meaning	behind	the	new	attributing	
method is that recent data have more impact on comput-
ing	latest	values	of	risk	measures.	Because	of	the	different	
way of attributing weights, obtaining VaR at a certain sig-
nificance	level	using	same	returns	involves	different	num-
ber	of	observations	for	two	methods.	The	exact	number	is	
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up	to	how	recently	the	extreme	low	returns	are	observed.	
What’s more, historical estimation method does not con-
sider linear interpolation usually while hybrid approach 
does.

Since the hybrid approach combines historical estima-
tion method and exponential smoothing method, it inher-
its	 their	advantages.	Like	historical	estimation,	hybrid	
method	does	not	 take	assumptions	before	being	used.	
Like exponential smoothing, the new approach uses ex-
ponential declining weights on past data, allowing users 
to capture the cyclical movement of return volatility and 
assigning more power to recent data, which is more real-
istic.	 It	 is	worth	mentioning	that	some	empirical	results	
presented that the new method provides an absolute error 
which is much lower than that of historical estimation 
approach	and	of	exponential	smoothing	approach.	Addi-
tionally,	in	the	paper	by	Boudoukh	et	al.	(1998),	the	au-
thor did a test and the results showed that the new meth-
od offers the lowest level of autocorrelation between 
assets	 and	parameters	among	 the	 three	approaches.	A	
very important advantage is that hybrid method provides 
improvements on the basis of historical estimation and 
exponential smoothing methods without increasing com-
putational complexity, data intensity and programming 
difficulty.

The	role	of	λ:	In	computation	of	time	weights,	λ	is	ac-
tually	a	decay	factor.	In	the	initial	step	of	hybrid	method,	
we denote lt	as	 the	realized	loss	from	t-1	 to	 t.	For	each	
of the most recent K losses, lt, lt-1,...,lt-(K-1)we assign the 
weights:

Where	λ	∈	(0,1)	is	fixed.	As	we	can	see,	when	λ	gets	
larger	in	interval	(0,1),	the	weights	given	to	data	observed	
further in the past will be smaller while that assigned to 
more	recent	data	will	be	greater.	That	means	returns	ob-
served recently have more power to affect the risk mea-
surement.

We	choose	λ	=	0.98	when	implementing	the	algorithm.	
The	reason	is	that	Boudoukh	et	al.	(1998)	fixed	λ	to	be	0.98	
when	he	gave	an	example	for	how	to	use	hybrid	method.	
Besides,	figure	4	shows	that	decay	factors	for	equity	indi-
ces	across	different	countries	are	close	to	0.98	and	because	
stocks are close to equity indices to some extent, we take 
equity	indices	as	representative	here.	And	When	we	take	
99%	as	the	value	of	the	confidence	level	α,	and	let	λ	=	0.98,	
the results of VaR0.99(L)	and	ES0.99(L)	are	$57,863.65	and	
$66,129.70	respectively.

Figure 4. Optimal decay factors based on volatility fore-
casts	(Risk	Metrics	technology	document	by	JP	Morgan,	

1996)

3. The Capital Requirement of the Portfolio

We consider using formulas C β*VaR 	(1 β)ES= + −0.99 0.99  
to calculate the capital requirement of the portfolio, then 
we identify whether the capital requirement C is a risk 
measure	or	not	and	shows	its	properties	(	For	simplicity,	
let	β=0.3	)[7] [8].

3.1 Monotonicity 

The	capital	requirement	C	is	a	Risk	measure.	Let	L1	and	
L2	be	two	random	variables,	we	can	get	that:

C(L1)	=	0.3V	aR0.99(L
1)	+	0.7ES0.99(L

1)

C(L2)	=	0.3V	aR0.99(L
2)	+	0.7ES0.99(L

2)

We know that VaRα and ESα are risk measure, which 
means	they	satisfied	with	monotonicity.	Thus	if	L1	≤	L2,	
it	is	easy	to	know:

	0.3V	aR0.99(L1)	+	0.7ES0.99(L1)	≤	0.3VaR0.99(L2)	+	0.7ES-
0.99(L2)

C(L1)	≤	C(L2)

Thus	the	capital	requirement	C	satisfies	Monotonicity,	
and	the	capital	requirement	C	is	a	Risk	measure.

3.2 Translation Invariance

The	capital	 requirement	C	is	a	Monetary	Risk	measure.	
Let	L	be	a	random	variable,	fix	m	∈ R, we can get

C(L	+	m)	=	0.3V	aR0.99(L	+	m)	+	0.7ES0.99(L	+	m)

As	we	know,	VaRα	and	ESα	are	translation	invariance,	
so:
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C(L	+	m)	=	0.3V	aR0.99(L	+	m)	+	0.7ES0.99(L	+	m)

	 	=	0.3(V	aR0.99(L)	+	m)	+	0.7(ES0.99(L)	+	m)

	 	=	0.3V	aR0.99(L)	+	0.3m	+	0.7ES0.99(L)	+	0.7m

	 	=	0.3V	aR0.99(L)	+	0.7ES0.99(L)	+	m

	 	=	C(L)	+	m

Thus the capital requirement C satisfies Translation 
invariance, and the capital requirement C is a Monetary 
Risk	measure.

3.3 Convex risk Measure 

The	capital	requirement	C	is	not	a	Convex	risk	measure.	
Let L1 and L2	be	two	random	variables,	fix	λ	∈ R, we can 
get:

C(λL1 +	(1	− λ)L2)	=	0.3VaR0.99(λL
1 +	(1	− λ)L2)	+	0.7ES-

0.99(λL
1 +	(1	− λ)L2).

As	we	know,	ESα	satisfies	Convexity	but	V	aRα	not.
Thus we cannot get	C(λL1 +	(1	− λ)L2)	≤	λC(L1)	+	(1	− λ)
C(L2),	 the	capital	 requirement	C	does	not	satisfy	Con-
vexity, and the capital requirement C is not a Convex risk 
measure.

3.4 Coherent risk Measure 

The capital requirement C is not a Coherent risk measure, 
but	 it	statisfies	positively	homogeneous.	Let	L	be	a	ran-
dom	variable,	fix	c	∈	(0,+∞),	we	can	get:

C(cL)	=	0.3V	aR0.99(cL)	+	0.7ES0.99(cL)

As	we	know,	V	aRα	and	ESα	are	both	Positive	Homo-
geneity,	so:

C(cL)	=	0.3V	aR0.99(cL)	+	0.7ES0.99(cL)

											=	0.3cV	aR0.99(L)	+	0.7cES0.99(L)

											=	cC(L),

thus	the	capital	requirement	C	satisfies	Positive	Homo-
geneity.	But	as	the	capital	requirement	C	is	not	a	Coherent	
risk measure, as the capital requirement C does not satisfy 
Convexity[4].

4. Monte Carlo Methods

In this part, the estimations of VaR0.99(Lt+1),	ES0.99(Lt+1)	

and	C(L t+1)	 by	 using	Monte	Carlo	 simulation	meth-
od	are	presented.	And	we	compare	 these	 estimations	
with	 the	 results	 of	historical	 estimation	method.	The	
remainder of this thesis is about that we assume the 
dependence structure between risk factors of the vector 
Xt+1 can be described as Student’s t-copula instead of 
Gaussian	copula.	Then	we	apply	a	discount	 factor	0.9	
to	estimate	 the	VaR	and	ES.	At	 last,	with	a	calibrated	
Student’s t-copula and 10000 simulations, we compute 
a	new	capital	C.	We	assume	that	the	vector	Xt+1 of risk 
factor changes between t and t+1 follows a multivariate 
normal	distribution:

Xt+1 ∼	N(µ,Σ)

In this case, µ is the mean vector of Xt+1,	Σ	is	the	cova-
riance matrix for Xt+1.	We	did	10,000	simulations,	and	find	
out VaR0.99(Lt+1)	=	75454.38,	ES0.99(Lt+1)	=	85630.77	so	
that	we	got	the	result:

We	can	find	that	the	VaR0.99(Lt+1)	and	ES0.99(Lt+1)	is	big-
ger than multivariate normal distribution’s results, cause 
the student-t copula has a sharper peak and heavier tail 
than the normal distribution, which means that as a result, 
the probability of extreme values is greater than that of 
normally	distribution.	Also,	this	Monte	Carlo	method	can	
be used for various distributions of risk factors Xt+1, and it 
has strong ability to deal with nonlinear and non-normal 
problems.	So	that	 it	can	be	applied	flexible	when	model	
changes,	and	we	can	apply	more	models	to	fit	the	data	to	
do	a	more	reasonable	prediction.	[9]

5. Conclusion

In this paper, we presented three different methods for es-
timating VaR and ES of our small portfolio of four stocks 
during	a	given	time	period.	The	implementation	process	
of each approach was discussed along with their advan-
tages	and	disadvantages.	This	was	done	for	 the	purpose	
was calculate the regulatory capital requirement for the 
investment portfolio, which the capital our investment 
portfolio needs to hold in reserves to have adequate pro-
tection against the risks we take on as an investment fun 
and	shocks	in	the	economy.
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