

ARTICLE

# Remote Monitoring and Maintenance of Smart Ships: A Framework for Optimizing Performance Using IoT and Machine Learning

Xinkai Mi<sup>1</sup> Yujie Liu<sup>2</sup> Jiaojiao Sun<sup>3</sup>

1.CSSC Heavy Industry (Qingdao) Marine Equipment Research Institute Co., Ltd.,Qingdao City, Shandong Province,266555  
2.CSSC Heavy Industry (Qingdao) Marine Equipment Research Institute Co., Ltd.,Qingdao City, Shandong Province,266520  
3.CSSC Heavy Industry (Qingdao) Marine Equipment Research Institute Co., Ltd.,Qingdao City, Shandong Province,266520

---

ARTICLE INFO

*Article history*

Received: 14 September 2024

Accepted: 21 September 2024

Published Online: 30 October 2025

---

*Keywords:*

Smart Ships

Remote Monitoring

Predictive Maintenance

Internet of Things (IoT)

Machine Learning

---

ABSTRACT

The current paper offers such conceptual framework of the remote control and support of smart ships that are based on the joint synergies involving Internet of Things (IoT) technologies and machine learning (ML) algorithms. Induced solely by the use of secondary sources of data (i.e. scholarly literature, industry reports, and real-life case-studies), the study will address the feasibility of intelligent systems carrying out real-time diagnostics, anticipating equipment failures, and optimising vessel performance. Three-tier architecture is introduced which combines sensor networks, data transmission platforms, cloud-based analytics, and graphical user interface support. It is proven in practice by the implementation carried out in major maritime companies and tested under the following advantages: the shortened suspension period, the improvement of fuel consumption, and the increase of the safety. Although the operational benefits are immense, the research also discusses technical and organizational issues, such as the ability of IT systems produced by different vendors to communicate with each other, the lack of cybersecurity, and a gap between the skills of the maritime workforce. It has been concluded in the paper that flexible, scalable and interoperable framework are key to driving predictive maintenance as well as remote operations, towards next generation of smart maritime systems.

## 1. Introduction

Mechanical systems and manual processes, which have defined the maritime industry, are being radically changed,

given the digital transformation that is taking place in this sector. The changeover to smart merchant vessels using sophisticated sensors, communications devices,

---

\*Corresponding Author:

Jiaojiao Sun

Email: 13325240446@163.com

and intelligent analytics is a major step to self-governing, efficient marine activities. These intelligent ships work based on real time information to track their progress, optimize the routes, anticipate future breakdowns and to protect onboard systems and crew lives. With marine commerce still growing by the day, there is more demand on smarter, trustworthy, and affordable sea solutions<sup>[1,2]</sup>.

Remote monitoring and predictive maintenance are one of the most important fields of development in this digital transformation. The combination of Internet of Things (IoT) and machine learning (ML) tools allows operators of a ship to control the most essential parameters: the state of engine, an amount of fuel, and hull, and even the condition of freights without any physical intervention. IoT sensors are able to log the high frequency of details on different parts of the ship, and machine learning-based algorithms track this data to figure out anomalies, identify future failures, and recommend countermeasures - sometimes even before the human workers themselves realize that a problem may be emerging. Not only does this transition increase the operational efficiency of the maritime assets and their safety but it will also ease the downtime and the maintenance costs by a significant margin<sup>[3]</sup>.

Notwithstanding these encouraging trends, there are certain challenges that were still hampering the implementation of remote monitoring and predictive maintenance systems in the maritime business on the mass scale. The traditional maintenance regimes that tend to be scheduled-driven or reactive repair-oriented are still prevalent in most sectors of the industry. Such methods will cause large maintenance expenditures, unexpected interruptions in functioning and poor utilization of human and technical resources. In addition, the environments of the sea are complex and severe, defined by salty and their rough working conditions, an unstable temperature, and permanent mechanical pressure, which require resistant and trustworthy monitoring devices<sup>[4]</sup>.

Moreover, even though the use of IoT and ML technologies has been successful in other sectors like the Av and manufacturing process, integration in maritime systems is yet to be fully developed. It is also extremely urgent that a coherent scheme be laid out on how all these technologies can be successfully adopted on intelligent ships to gain optimum operation, and curb down risk. Most of the available solutions are not interoperable, scalable and an intelligent vessel management. There is therefore need to approach integration of remote monitoring systems in a strategic and system wide manner to help in development and deployment of integrated remote monitoring systems that are in line with the needs

of the maritime<sup>[5]</sup>.

The primary goal of the paper is to suggest an idea on the conceptual framework of remote monitoring and maintenance of smart ships based on IoT and machine learning. The paper examines the synthesis application of these technologies in carrying out health diagnostics in real time, facilitating predictive maintenance, and generally performance optimization of the vessel. This study is based on secondary data, such as the literature review of the scholar, market reports and case studies rather than investments in the main official data and field experiment<sup>[6]</sup>.

In particular, the study seeks to review literature on smart ship technologies, remote monitoring, and predictive maintenance; understand the applications of IoT devices and ML algorithms in real-time ship health monitoring; provide the generalized system architecture and the working process of remote monitoring and maintenance, investigate the real-life examples of the use of these technologies in maritime cases, and define the technical, operational, and regulatory obstacles to the use of such systems. Fulfilling these goals, the paper aims to satisfy the acute absence of the paperwork on modern maritime research, a clearly defined and scalable framework utilizing the advantages of both IoT and ML that would be used to make intelligent decisions in managing shipping and boats<sup>[7]</sup>.

This study is conducted entirely through secondary research and does not involve primary data collection or on-board trials. It relies on a synthesis of existing knowledge and documented use cases to propose a theoretically sound and practically relevant framework. The scope is intentionally limited to cargo and commercial ships operating in international waters, where the economic and operational stakes of equipment failure and inefficiency are highest.

The significance of this research lies in its potential to inform both academic inquiry and industry practice. For researchers, the study provides a foundation for further exploration into cyber-physical maritime systems and intelligent diagnostics. For shipowners, marine engineers, and policy makers, the framework offers a reference point for implementing smarter maintenance strategies that improve safety, reduce costs, and ensure compliance with evolving regulatory standards, such as those set by the International Maritime Organization (IMO)<sup>[8]</sup>.

The smart utilization of the data with the help of IoT and ML technologies can assist the maritime sector in becoming more sustainable and resilient in the times when environmental performance and operational effectiveness are among the most important competitive advantages.

The present study is also planned to form a part of that vision by giving the overall level of how the remote monitoring and predictive maintenance could be utilized in the innovative ships setting [9,10].

## 2. Literature Review

The literature review gives a detailed analysis of technological, operational, and strategic aspects of remote monitoring and maintenance in innovative ships with its reference on IoT and machine learning. It radiates what it is already known and points out gaps and establishes the premises of the proposed framework [11].

### 2.1 Digitalization of the Sea Industry and Smart Ships

Innovative ships bring forward a major paradigm change to operations at sea, through digitization, automation, and determining real-time data analytics. The International Maritime Organization (IMO) has stated that innovative ships combine the application of various technologies including autonomous navigation, intelligent engine control systems, environmental sensors, and cloud-based analytics. They are mainly related to enhance fuel consumption, safety, cargo management and ensuring environment regulations. The need to reduce the cost of operation and higher safety has been the thrust towards smart vessels because of the growing demand. Researchers have stressed that new ships are no longer science fiction but new realities where some of the initial models are even operational along European and Asian trade routes.

Academic sources like DNV and Lloyd's Register have classified the digital maturity of ships into levels ranging from partially automated to fully autonomous vessels. This gradual transformation sets the stage for the integration of remote diagnostics and intelligent maintenance as part of core ship operations [12,13].

### 2.2 Internet of Things in Marine Engineering

The history of smart ships revolves around the Internet of Things (IoT). IoT is defined as the network of physical objects, i.e., sensors and actuators that gather, transfer, and exchange the information. These gadgets have been incorporated in the marine environment and are usually found in propulsion, generators, cargo containers, and navigation controls. Monitored commonly are engine temperature, pressure, vibration, fuel consumption, hull stress and cargo temperature. Research shows that IoT devices significantly enhance visibility into the operational health of ships. For instance, real-time condition

monitoring of marine engines has reduced mechanical failures and improved planned maintenance schedules. Industry whitepapers from companies like Wärtsilä and Rolls-Royce demonstrate how IoT integration enables predictive and condition-based maintenance instead of relying solely on fixed intervals.

However, maritime IoT deployment faces challenges related to harsh environmental conditions, data transmission over long distances, and standardization across different manufacturers. The review of existing systems suggests a growing maturity in hardware robustness and communication protocols, including the use of satellite links and edge computing [14,15].

### 2.3 Machine Learning in Predictive Maintenance

Machine learning plays a critical role in making sense of the vast quantities of data collected by IoT devices. Predictive maintenance, enabled by ML algorithms, aims to forecast equipment failures before they happen, thereby preventing costly downtimes. ML models such as Random Forest, Support Vector Machines (SVM), and Long Short-Term Memory (LSTM) networks have been widely studied for their effectiveness in time-series prediction and anomaly detection.

Case-based literature reveals several successful applications of machine learning in marine equipment monitoring. For example, supervised learning algorithms have been used to predict fuel injector failures based on pressure and vibration data. Unsupervised models have detected outliers in ship behavior, indicating potential navigational or mechanical anomalies.

One challenge noted in the literature is the scarcity of labeled failure data from marine environments, which complicates training of supervised models. However, transfer learning and synthetic data generation are emerging as promising solutions to overcome this limitation. The integration of ML not only improves failure prediction but also supports dynamic decision-making by recommending optimized operating parameters [16].

### 2.4 Existing Remote Monitoring Systems

Several commercial platforms already offer remote monitoring and maintenance solutions tailored for maritime applications. Examples include Wärtsilä's "Expert Insight," ABB's "Ability Marine Fleet Intelligence," and Kongsberg's "Kognifai" system. These platforms typically combine onboard sensor networks with cloud analytics dashboards accessible by shore-based operations teams.

Published evaluations of these systems emphasize their ability to reduce unplanned maintenance events by up to 50%, optimize fuel usage, and improve route planning. However, most platforms operate in proprietary silos, limiting interoperability and data exchange across fleets using different vendors. Literature calls for more open architectures and standardized data protocols to facilitate broader adoption.

Furthermore, the degree of automation and intelligence varies widely. While some systems provide real-time alerts, others integrate AI-based decision support systems for autonomous corrections. The review indicates a trend toward more sophisticated, closed-loop systems capable of adjusting ship operations in real-time based on predictive insights<sup>[17,18]</sup>.

## 2.5 Gaps in the Literature

Although significant progress has been made in the application of IoT and machine learning within maritime systems, notable gaps remain. Most studies focus on individual technologies in isolation rather than proposing holistic, integrated frameworks. There is also a lack of research tailored specifically to the operational complexities of ocean-going vessels, such as limited connectivity, power constraints, and multi-vendor equipment environments.

Moreover, while case studies exist, few synthesize cross-cutting lessons to inform the design of scalable systems for the wider industry. There is also insufficient examination of organizational, regulatory, and cybersecurity challenges that affect implementation. These gaps indicate a clear need for a unifying conceptual model that can guide the development of interoperable, intelligent remote monitoring systems across the global shipping industry<sup>[19]</sup>.

## 3. Methodology

This study adopts a qualitative, exploratory research design based entirely on secondary data sources. The purpose is to develop a comprehensive conceptual framework for remote monitoring and maintenance in smart ships, integrating the capabilities of Internet of Things (IoT) technologies and machine learning (ML) algorithms. Since the study does not involve the collection of primary data such as surveys, interviews, or technical experiments, the methodology emphasizes literature synthesis, comparative case study analysis, and theoretical modeling.

### 3.1 Research Design

The research follows a conceptual and interpretive

approach, appropriate for early-stage investigations into complex, multidisciplinary topics. The domain of smart ship technology — particularly the convergence of IoT and ML for maintenance optimization — is still evolving, making it ideal for a theory-building rather than a theory-testing study. The goal is to interpret and synthesize existing knowledge from technical reports, academic articles, and case studies in order to derive patterns, identify gaps, and propose a structured framework.

This non-empirical methodology allows for broad coverage of technological and operational themes without the constraints or biases that may arise from specific field deployments or limited datasets<sup>[20]</sup>.

### 3.2 Data Sources

The study relies exclusively on **secondary data**, collected from a wide range of credible and relevant sources. These include:

- **Academic Journals and Conference Proceedings:** Peer-reviewed literature from journals such as *Marine Technology*, *IEEE Internet of Things Journal*, *Ocean Engineering*, and *Journal of Ship Research*.
- **Industry White Papers and Technical Reports:** Documents published by marine technology firms such as Wärtsilä, ABB, Rolls-Royce, and Kongsberg, which offer real-world insight into current technologies, system architectures, and performance outcomes.
- **Regulatory and Policy Documents:** Guidelines and strategic roadmaps from institutions like the International Maritime Organization (IMO), which contextualize the regulatory and environmental landscape.
- **Case Study Documentation:** Published analyses of implemented IoT and ML-based maintenance solutions in commercial shipping operations, often featured in trade journals and corporate case reports.

Selection of sources was guided by relevance to the research topic, credibility of the authors or organizations, publication recency, and the presence of empirical or technical detail<sup>[21]</sup>.

### 3.3 Analytical Approach

The methodology integrates two key techniques for analysis:

#### a. Thematic Content Analysis

All collected materials were examined using **thematic analysis** to identify recurring concepts, technological patterns, operational issues, and strategic priorities. Themes were categorized under headings such as:

- Types and roles of IoT devices in maritime contexts
- ML techniques applied to predictive maintenance
- System architectures for remote monitoring
- Benefits and risks of smart ship technologies
- Implementation challenges and barriers

This approach enabled the synthesis of cross-domain insights to create a holistic understanding of the field.

#### b. Comparative Case Study Analysis

Two or more documented case studies were selected from secondary literature to serve as **comparative exemplars**. These case studies demonstrate the real-world application of IoT and ML technologies in ship monitoring and maintenance. They were analyzed along parameters such as:

- Type of vessel and operational environment
- Sensors and data collection methods used
- ML algorithms deployed and outcomes achieved
- Challenges faced and mitigative strategies adopted
- Quantifiable improvements in maintenance schedules, safety, or cost

Comparative analysis allowed the research to draw practical lessons and validate key assumptions of the proposed framework <sup>[22]</sup>.

#### 3.4 Framework Development Process

Following the information provided in the literature and case studies, the study goes through to formulate a conceptual framework that simulates the remote monitoring and maintenance of smart ships. This went as follows:

1. **Component Identification:** Identification of (key) components in real-world systems (e.g., sensors, edge devices, cloud servers, ML modules).

2. **Functional Mapping:** The breakdown of the particular roles of each element of the remote monitoring process.

3. **Data Flow Design:** Documenting the Data Flow of how to collect, transport, process and utilize data in decision making.

4. **Combining with ML Models:** Correlating the suitable machine learning methods with each maintenance task (e.g., anomaly inferring, performance improving).

5. **System Architecture Synthesis:** Modelling the whole system as a layered system which comprises of physical devices, data transmission layers, computational modules and the user interfaces.

6. **Validation Against Literature and Case Studies:** Testing the proposed model through comparing and contrasting it with real life applications to ascertain pragmaticistic and applicability.

What is obtained is a broad and flexible system that can

be adopted in subsequent development and use of smart monitoring systems in commercial shipping fleets <sup>[23]</sup>.

#### 3.5 The Methodology Limitations

As efficient as the utilization of the secondary data could be, encompassing a wide range and coverage, there are downsides to it:

- No real-time validation of performance: Anyone can make up a nice framework but without performance verification made in primary testing, it is all in theory.
- Possible publication bias: Case studies encountered in company reports can show greater focus on success and reduced coverage of difficulties.
- Incomplete data: Information on publicly available sources can be insufficient as far as technical characteristics and proprietary algorithm models can be concerned.

In spite of these shortcomings, the employed methodology is appropriate and applicable since the study is conceptual, and hence, a sufficient background can be given to other empirical studies <sup>[24]</sup>.

### 4. Proposed Framework

This part provides a clear conceptual model of such a sensing-system that is based on IoT and a machine-learning algorithm to perform remote monitoring and maintenance of smart ships. It also describes architecture, a working cycle, technological stack, and intelligent drives that should be provided to support real-time diagnostics, predictive maintenance, and optimization of performance. The framework is a general and practical model since it all lies on what is known in literature, commercial systems and case studies.

#### 4.1 System Architecture

The framework suggested is organized in the format of a layered architecture, which is the unity of hardware, software, data communication, and analytics. It forms four fundamental layers which are as follows:

##### 1. Sensing Layer (IoT Edge Layer)

This layer comprises a network of **onboard sensors** and **edge computing devices** installed throughout the ship. These include:

- o Temperature, pressure, vibration, and acoustic sensors for engine monitoring
- o GPS, gyrocompass, and weather sensors for navigational and environmental data
- o Load cells and humidity sensors for cargo integrity and safety

- o Power consumption meters and fuel flow meters for energy performance

## 2. Data Transmission Layer

Data collected by sensors is transmitted in real time to on-board servers or cloud platforms using maritime communication protocols. These include:

- o **Wired systems** (e.g., CAN bus, Modbus) for intra-ship connections
- o **Wireless systems** (e.g., Wi-Fi, ZigBee, LoRaWAN)
- o **Satellite links and Very Small Aperture Terminal (VSAT)** systems for ship-to-shore communication

## 3. Processing and Analytics Layer

This is the core of the intelligent system, where data is processed using:

- o **Edge devices** for initial filtering and event detection
- o **Cloud-based analytics platforms** for heavy machine learning computations
- o **Data lakes and structured databases** for historical recordkeeping and trend analysis

Machine learning models are deployed here to perform fault detection, predictive diagnostics, anomaly recognition, and optimization.

## 4. Application Layer

The final layer includes:

- o **Dashboards and alert systems** accessible by onboard crew and shore-side operations teams
- o **Decision-support modules** that recommend maintenance actions or adjust operational parameters
- o **API interfaces** for integration with other fleet management systems<sup>[25]</sup>

## 4.2 Functional Capabilities of the Framework

The framework supports a series of interconnected functions critical to modern ship operations:

### • Real-Time Health Monitoring

Sensor data is continuously analyzed to assess the operational status of engines, auxiliary systems, navigation systems, and environmental controls.

### • Predictive Maintenance

Using supervised and unsupervised machine learning models, the system predicts potential failures, estimates remaining useful life (RUL), and schedules maintenance accordingly. For example, abnormal vibration patterns may signal bearing wear in the engine.

### • Performance Optimization

ML algorithms analyze past and real-time data to recommend adjustments that improve fuel efficiency, optimize load distribution, or enhance route planning

under dynamic environmental conditions.

### • Autonomous Feedback Loop

Certain parameters (e.g., valve pressure, cooling system flow rates) may be automatically adjusted based on thresholds learned by the ML system, forming a closed-loop control system with minimal human intervention.

### • Remote Diagnostics

Shore-based technical teams can access the ship's live data to troubleshoot issues, reducing the need for on-site interventions during port calls or voyages.

## 4.3 Workflow Description

The overall operational workflow of the proposed system is as follows:

### 1. Data Collection

IoT sensors collect data on mechanical, navigational, and environmental variables.

### 2. Preprocessing at the Edge

Edge devices perform noise reduction, timestamping, and anomaly flagging before transmitting data.

### 3. Data Transmission and Storage

Cleaned and compressed data is sent to cloud infrastructure via ship-to-shore satellite communication or stored locally during blackout periods.

### 4. ML-Based Analytics

Machine learning models (e.g., Random Forests for classification, LSTM for time-series prediction, k-means for clustering anomalies) analyze incoming and historical data to detect early warning signs and recommend actions.

### 5. Action and Notification

Results are presented on dashboards in the form of visual alerts, performance scores, or maintenance schedules. Autonomous adjustments may also be triggered for certain systems.

### 6. Feedback and Model Improvement

As new data is generated, the system continuously learns and updates its predictive models to improve accuracy over time.

## 4.4 Technologies Involved

The framework relies on a combination of mature and emerging technologies, including:

### • IoT Technologies:

Sensors (e.g., MEMS accelerometers), microcontrollers (e.g., Raspberry Pi, Arduino), gateways, and communication modules.

### • Machine Learning Algorithms:

- o **Supervised:** Decision Trees, SVM, Neural

- Networks for predictive maintenance.
- o **Unsupervised:** PCA, clustering for anomaly detection and operational benchmarking.
- o **Reinforcement Learning:** Potentially for adaptive system control in real-time optimization.
- **Cloud Platforms:**  
AWS IoT Core, Microsoft Azure IoT Hub, and proprietary platforms used by maritime technology firms.
- **Data Management Tools:**  
Time-series databases (e.g., InfluxDB), data visualization tools (e.g., Grafana, Power BI), and containerized applications (e.g., Docker) for flexible deployment<sup>[26]</sup>.

#### 4.5 Key Strengths of the Framework

- **Modularity and Scalability:** Can be implemented in full or in phases across different classes of ships.
- **Vendor-Agnostic Design:** Encourages interoperability between equipment from different manufacturers.
- **Real-Time and Predictive Capabilities:** Shifts maintenance strategy from reactive or scheduled to predictive and dynamic.
- **Reduced Human Dependency:** Enhances safety by minimizing unnecessary human inspections and interventions.

This framework acts as a strategic blueprint for industry practitioners and a conceptual foundation for academic researchers. It provides a vision for the intelligent future of ship operations, where data-driven decisions support both economic and environmental sustainability<sup>[27]</sup>.

### 5. Case Studies

To provide the practice basis to the suggested framework, the current section examines few of the case studies based on secondary sources, e.g. maritime industry reports, corporate journals, peer-reviewed technical papers. The given case studies illustrate the utilization of IoT-powered monitoring devices and machine learning algorithms on board smart ships and how they have been employed to streamline the process of maintenance, minimize operation expenditures and ensure the safety of ship ventures. These examples will not give empirical validation, but it will demonstrate what is considered practical, what people should do as best practices, and highlight problems that it brings in terms of implementation in the context of various operations.

#### 5.1 Case study 1: Wartsila expert insight to monitoring remote engine

Wartsila, one of the world leaders in maritime technology, had launched the platform of Expert Insight, which offered predictive support in maintaining the ship engine with the help of remote monitoring and analysis. The system uses a blend of onboard IoT sensors and cloud-based machine learning models to forever log the wellbeing of the primary engine, additional systems, and fuel systems.

##### Key Features and Outcomes:

- A network of embedded sensors collects vibration, temperature, and pressure data from the engine room in real time.
- The data is transmitted to Wärtsilä's cloud servers, where machine learning models compare it against digital twins and known failure patterns.
- The system detects early warning signs of cylinder imbalance and turbocharger inefficiencies, enabling the ship crew and remote experts to take proactive measures.
- Results showed up to **50% reduction in unplanned maintenance** and **significant fuel savings** through improved engine tuning.

This case validates the **predictive maintenance component** of the proposed framework and demonstrates how remote monitoring reduces the need for technical interventions at sea or in port<sup>[28]</sup>.

#### 5.2 Case Study 2: Kongsberg's "Kognifai" Integrated Vessel Insight Platform

Kongsberg Maritime developed "Kognifai," an open digital ecosystem that connects onboard sensors, control systems, and machine learning models via a centralized cloud platform. It has been implemented on various commercial vessels, including LNG carriers and offshore support ships.

##### Implementation Highlights:

- The Kognifai system integrates with shipboard automation systems to collect real-time data from navigation controls, propulsion systems, and environmental sensors.
- Using machine learning algorithms such as clustering and regression, the system identifies patterns of inefficiency or abnormal system behavior.
- On one offshore support vessel, the platform predicted bearing wear in the azimuth thruster 10 days before failure would have occurred, saving

over \$200,000 in dry-dock repairs.

- The system also optimizes fuel consumption by adjusting engine load and speed profiles based on weather forecasts and route data.

This case illustrates the **integration of multiple subsystems** under a unified monitoring and optimization platform — supporting not just maintenance, but also performance enhancement and energy efficiency <sup>[29]</sup>.

### 5.3 Case Study 3: Maersk's Use of IoT for Reefer Container Monitoring

Although focused on cargo monitoring rather than ship equipment, Maersk's reefer container tracking system demonstrates the scalability of IoT infrastructure across an entire fleet. Each refrigerated container is equipped with GPS and environmental sensors connected to a central platform.

#### Key Insights:

- The system enables shore teams to monitor the

temperature and humidity of perishable cargo in real time.

- Machine learning models identify containers at risk of equipment malfunction or deviation from optimal conditions.
- The company has reduced cargo spoilage and improved logistical planning, translating into improved customer satisfaction and lower insurance claims.

While this case focuses on cargo management, it supports the framework's modular approach, demonstrating that different layers of ship systems (cargo, propulsion, and navigation) can be managed through a common IoT-ML infrastructure <sup>[30]</sup>.

### 5.4 Comparative Analysis

The three case studies, though varied in focus and scale, highlight common themes and key insights that support the validity of the proposed framework:

| Aspect             | Wärtsilä                       | Kongsberg                              | Maersk                           |
|--------------------|--------------------------------|----------------------------------------|----------------------------------|
| Focus              | Engine maintenance             | Holistic vessel monitoring             | Cargo condition monitoring       |
| IoT Components     | Vibration, temp sensors        | Navigation, propulsion sensors         | GPS, humidity sensors            |
| ML Techniques Used | Predictive modeling            | Clustering, regression                 | Anomaly detection                |
| Benefits Achieved  | Reduced downtime, fuel savings | Failure prediction, route optimization | Reduced spoilage, better control |
| Scope              | Engineering systems            | Multi-system integration               | Cargo fleet-wide                 |

From this analysis, several patterns emerge:

- Predictive maintenance is a clear benefit**, reducing unscheduled interventions and avoiding catastrophic failures.
- Scalability and integration** are key challenges; successful implementations are those that consolidate different ship functions into a unified platform.
- ML models must be adapted to specific ship types and use-cases**, as no one-size-fits-all approach exists.
- Human-machine collaboration** remains important. Alerts and diagnostics generated by ML systems are generally acted upon by experienced personnel rather than triggering fully autonomous responses.

### 5.5 Lessons for the Proposed Framework

These case studies affirm that the proposed layered architecture and functional model — combining sensing, communication, analytics, and decision support — reflects the real-world direction of smart shipping. In particular, they support the framework's assumptions regarding:

- The effectiveness of ML in both fault prediction and

performance optimization

- The importance of edge and cloud cooperation for efficient data processing
- The economic rationale behind shifting from reactive to predictive maintenance
- The viability of remote monitoring as an operational and commercial necessity in modern fleets

At the same time, they highlight areas that future frameworks and implementations must address, such as:

- Standardization and interoperability across vendors and ship types
- Cybersecurity and data privacy risks in cloud-based monitoring
- Workforce readiness to interpret and act upon machine-generated insights <sup>[31]</sup>.

### 6. Advantages and Challenges

A radical change to the maritime sector through the use of remote monitoring and predictive maintenance systems that operate using IoT and machine learning technologies is applied in smart ships. Such technologies have a great potential of improving vessel efficiency, safety, and sustainability. Nevertheless, with the attractive

benefits that it comes along with, its implementation does not come without its hustles. This section gives a fair reading regarding the major advantages and the practical difficulties that might arise such as technology challenges, operational and regulatory challenges.

## 6.1 Advantages on Operation

The combination of the smart observation and maintenance systems provides the significant operational benefits:

### a. Reduced Downtime and Maintenance Costs

Predictive maintenance enables early detection of component wear or failure through real-time monitoring and machine learning-based forecasting. By shifting from a reactive or fixed-schedule maintenance model to a condition-based approach, shipping companies can reduce unplanned outages and extend equipment life. As demonstrated in the Wärtsilä and Kongsberg case studies, predictive systems have reduced downtime by up to 50% and avoided expensive dry-dock repairs.

### b. Improved Fuel Efficiency and Performance

IoT systems monitor parameters such as fuel flow, engine load, and vessel speed, allowing machine learning models to recommend optimal settings for reduced fuel consumption. Performance optimization through data-driven insights not only leads to economic savings but also aligns with global environmental regulations aimed at reducing emissions.

### c. Enhanced Safety and Risk Management

The situational awareness is increased when the peculiarities in the propulsion systems, navigation devices, or environmental sensors are discovered at an early stage, thus minimizing the possibility of accidents. Remote diagnostics also eliminate the labour risk of an unsafe manual survey during sea travels or in extreme weather conditions.

### d. Reduced On-site Interventions on Technologies

On the water, they offer the possibility of reasonable data transmission to the command centres on land where expert technicians can evaluate faults remotely, give suggestions to the onboard crew or even initiate automatic corrections. That minimizes time and expenses of sending people to a vessel to perform diagnostics or repairs, and this is especially useful in offshore or long-range shipping.

### e. Central Management of Fleets

There is a single dashboard that provides fleet operators with a detailed overview of various vessels. By allowing centralized monitoring, it allows the improved allocation of resources, maintenance planning (as well as benchmarking maintenance performance across the

fleet), which results in the improved overall coherence of operation [32].

## 6.2 Technical and Organization difficulties

Despite the fact that these are some of the strengths, there are a number of important areas, which should be considered to make it generally acceptable and sustain it in the long run.

### a. Data reliability Data Reliability and Connectivity Constraints

A good quality and reproducible data are required to measure in a reliable way in the real-time. The issue though is that the concerned ships are most likely to be in places whose connectivity is poor or even absent. The prediction of machine learning may not be quite accurate or timely depending on the data being transmitted timely or accurately which may either be absent or delayed when it comes to the mission-critical systems.

### b. The aspects of interoperability and integration complexity

Various vessels can contain many parts made by other suppliers using diverse information standards and protocols. Technically speaking, it is not simple to incorporate both of them into a single IoT-ML system. Failure of interoperability between the sensors and the analytics platform and the control system can cause data silos and partial diagnostics.

### c. Cybersecurity threats

The more the people are connected the more they are exposed to the hackers. Control system of a boat hijacking or hacking the information sent by the sensors could be disastrous. The security of data traffic and the easiness in ensuring integrity to the remote surveillance systems has always been an issue that implies the presence of quality security measures such as encryption, authentication, and surveillance.

### d. Highly costly and Return on Investment Uncertainty

The long-term maintenance savings are obvious when taking the turn to predictive maintenance, but the short-term costs are also typically high, that is, the IoT hardware, satellite communications network, and machine learning infrastructure, along with training workers will generally cost quite much. The time span of ROI is unclear and this is the reason as to why smaller operators are unwilling to act as mediators.

### e. Skills Gap and Human factors

To be successfully applied, onboard teams and shore teams are supposed to trust and comprehend the outcomes of ML models. Odd sensations about automation,

insufficient information skills, and experience handling predictive systems may hinder product usage. Change management and training programs are the most important in ensuring that integration is successful<sup>[33]</sup>.

### 6.3 Prospects of Environmental and Regulation

Other than technical and operating concerns, the larger implications which come into play under sustainability and compliance issues are more comprehensive in nature:

#### a. Environmental Sustainability

The end effect would be a positive one whereby the fuel consumption is less and gases into green houses are minimal, as the performance is optimized and maintenance is proactive. It is consistent with the IMO Energy Efficiency Existing Ship Index (EEXI) and Carbon Intensity Indicator (CII), which will require an energy efficiency, and a decrease in emission patterns, that such vessels shall meet.

#### b. Reporting and Safety and Reporting standards requirement.

Themes of disclosure of system operating condition, system maintenance and incident data are being called out as a part of transparency in maritime regulation, and this may be becoming a norm. Automated systems can

streamline the requirement to comply with safety and inspection regimes, including the SOLAS (Safety of Life at Sea) and the ISM (International Safety Management) codes because those obligations provide administrative and accountability is easier.

#### c. Ownership and management of data

Since more and more data on board of a ship is also subject to moving to third party cloud resources, there arises the concern of the right of ownership of the data, the use to which data will be put and also the privacy of the data. The operators are advised to make sure there is a legal contract as well as compute security in order to guard the sensitive information in the operations.

This discussion supports the validity of the conclusion that although the advantages of an IoT and ML-based remote monitoring system are huge, its effective implementation needs a multi-dimensional approach. It should not only deal with the technology stack but also with the crew training, cybersecurity, managing the costs, and aligning to regulations. These results enhance the proposal that there should be a flexible and modular construct, such as the one presented in this paper, which can be fine-tuned to suit a ship according to its individual operating pattern and digital maturity<sup>[34,35]</sup>.

### Summary of Benefits and Challenges

| Category                   | Key Benefits                                              | Key Challenges                                       |
|----------------------------|-----------------------------------------------------------|------------------------------------------------------|
| Operational                | Reduced downtime, better performance, fewer interventions | Integration issues, real-time data gaps              |
| Technical                  | High automation potential, centralized fleet management   | Cybersecurity threats, standardization hurdles       |
| Financial                  | Long-term cost savings                                    | High initial investment, uncertain ROI               |
| Regulatory & Environmental | Easier compliance, improved emissions control             | Data governance, legal liability of remote decisions |
| Human Factors              | Crew support and risk reduction                           | Skills gap, resistance to AI-based decisions         |

## 7. Future Work

The given research addressed the possibility of a transition towards the smart ships with remote monitoring and predictive maintenance systems with the focus on the integration of Internet of Things (IoT) technologies and machine learning (ML) algorithms. The study conducted using the secondary material (academic publications, white papers on the topic, recorded case studies) proposed the conceptual model that defines the application of real-time diagnostics, smart maintenance etc.). The research focuses on how real-time diagnostics, smart maintenance and performance optimization may be used in the maritime industry.

The proposed framework offers a tiered design, which includes onboard sensing, trusted data delivery, and cloud-based analytics, as well as the interface to take a decision.

It is in line with modern day technological advancements and is aligned with the objectives of the world maritime community concerning the purpose of cutting operational costs and making the vessels safer and with year after year demanding environmental norms. Real-life experience of major marine companies like Wartsila, Kongsberg and Maersk has confirmed the main points in the model and showed ways of practical optimization of fuel consumption, removing failures and coordination of logistics, using data-driven strategy.

There are some challenges associated with such systems although their impact is immense which is witnessed in the way it has reduced downtimes, reduced human interference and the environment is the better placed. Such problems as the integration of data, remote waters connectivity, cybersecurity, and the lack of skills among maritime staff create real adoption barriers.

Moreover, the initial cost of investment can be high as well as uncertainties regarding the investment returns can delay deployment process, particularly in the case of smaller operators.

Nevertheless, the pressure of the technological development and the market drives the argument of digital transformation of shipping to the more convincing. Remote surveillance and predictive maintenance assisted by IoT and machine learning provide the evident direction of more innovative sustainable and safe maritime operations. The theoretical framework created in this research paper is a baseline model with respect to design, adaptation, and implementation of intelligent maintenance systems on the diverse classes of vessels by the ship operators, engineers, and policymakers.

The next stage of development should focus on carrying out empirical studies and simulations to determine the performance of this framework under different operational territories. Necessary digging on the topics of standardisation of maritime IoT protocols, develop explainable AI models for ship diagnostics, and establish best practices of cybersecurity and data governance will also go a long way. As the maritime industry head towards complete digital transformation these multidisciplinary research activities will play a critical role in the development of the next generation of smart and autonomous ships and vessels.

## References

[1] Kechagias EP, Chatzistelios G, Papadopoulos GA, Apostolou P. Digital transformation of the maritime industry: A cybersecurity systemic approach. *International Journal of Critical Infrastructure Protection*. 2022 Jul 1;37:100526.

[2] Autsadee Y, Jeevan J, Bin Othman MR, Mohd Salleh NH. Maritime Society 5.0: a global transition on human economy and civilisation for maritime sustainability. *Australian Journal of Maritime & Ocean Affairs*. 2025 Jan 2;17(1):1-26.

[3] Mourtzis D, Angelopoulos J, Panopoulos N. Design and development of an IoT enabled platform for remote monitoring and predictive maintenance of industrial equipment. *Procedia Manufacturing*. 2021 Jan 1;54:166-71.

[4] Kalafatelis AS, Nomikos N, Giannopoulos A, Alex- andridis G, Karditsa A, Trakadas P. Towards predictive maintenance in the maritime industry: A component-based overview. *Journal of Marine Science and Engineering*. 2025 Feb 25;13(3):425.

[5] Sanchez-Gonzalez PL, Díaz-Gutiérrez D, Leo TJ, Núñez-Rivas LR. Toward digitalization of maritime transport?. *Sensors*. 2019 Feb 22;19(4):926.

[6] Aslam S, Navarro A, Aristotelous A, Garro Crevillen E, Martinez-Romero A, Martínez-Ceballos Á, Cassera A, Orphanides K, Herodotou H, Michaelides MP. Machine Learning-Based Predictive Maintenance at Smart Ports Using IoT Sensor Data. *Sensors*. 2025 Jun 24;25(13):3923.

[7] Nguyen M, Tran L. From Shore to Sea: IoT Solutions for Enhanced Vessel Monitoring and Maritime Safety. *Asian American Research Letters Journal*. 2024 Jun 8;1(4).

[8] Zou Y, Xiao G, Li Q, Biancardo SA. Intelligent Maritime Shipping: A Bibliometric Analysis of Internet Technologies and Automated Port Infrastructure Applications. *Journal of Marine Science and Engineering*. 2025 May 19;13(5):979.

[9] Durlik I, Miller T, Cembrowska-Lech D, Krzemińska A, Złoczowska E, Nowak A. Navigating the sea of data: a comprehensive review on data analysis in maritime IoT applications. *Applied Sciences*. 2023 Aug 28;13(17):9742.

[10] Aslam S, Herodotou H, Garro E, Martínez-Romero Á, Burgos MA, Cassera A, Papas G, Dias P, Michaelides MP. IoT for the maritime industry: challenges and emerging applications. In *2023 18th Conference on Computer Science and Intelligence Systems (FedCSIS) 2023 Sep 17* (pp. 855-858). IEEE.

[11] Filom S, Amiri AM, Razavi S. Applications of machine learning methods in port operations—A systematic literature review. *Transportation Research Part E: Logistics and Transportation Review*. 2022 May 1;161:102722.

[12] Durlik I, Miller T, Cembrowska-Lech D, Krzemińska A, Złoczowska E, Nowak A. Navigating the sea of data: a comprehensive review on data analysis in maritime IoT applications. *Applied Sciences*. 2023 Aug 28;13(17):9742.

[13] Shaveko O. Maintenance of Autonomous Vessels (advantages and disadvantages) in comparison with Conventional Ships.

[14] Sharma N, Shamkuwar M, Singh I. The history, present and future with IoT. In *Internet of things and big data analytics for smart generation 2018 Dec 31* (pp. 27-51). Cham: Springer International Publishing.

[15] Raptodimos Y. Combination of reliability tools and artificial intelligence in a hybrid condition monitoring framework for ship machinery systems.

[16] Ullah A, Anwar SM, Li J, Nadeem L, Mahmood T, Rehman A, Saba T. Smart cities: The role of Internet of Things and machine learning in realizing a data-centric smart environment. *Complex & Intelligent*

Systems. 2024 Feb;10(1):1607-37.

[17] Aslam S, Michaelides MP, Herodotou H. Internet of ships: A survey on architectures, emerging applications, and challenges. *IEEE Internet of Things journal*. 2020 May 8;7(10):9714-27.

[18] Nguyen H. Digitaalisen kaksosen hyödyntäminen meriteollisuudessa.

[19] Durlik I, Miller T, Dorobczyński L, Kozlovska P, Kostecki T. Revolutionizing marine traffic management: a comprehensive review of machine learning applications in complex maritime systems. *Applied Sciences*. 2023 Jul 11;13(14):8099.

[20] Liu RW, Liang M, Nie J, Lim WY, Zhang Y, Guizani M. Deep learning-powered vessel trajectory prediction for improving smart traffic services in maritime Internet of Things. *IEEE Transactions on Network Science and Engineering*. 2022 Jan 7;9(5):3080-94.

[21] Xue J, Yang P, Li Q, Song Y, Gelder PV, Papadimitriou E, Hu H. Machine Learning in Maritime Safety for Autonomous Shipping: A Bibliometric Review and Future Trends. *Journal of Marine Science and Engineering*. 2025 Apr 8;13(4):746.

[22] Sepasgozar SM, Davis SR, Li H, Luo X. Modeling the implementation process for new construction technologies: Thematic analysis based on Australian and US practices. *Journal of Management in Engineering*. 2018 May 1;34(3):05018005.

[23] Lea P. *IoT and Edge Computing for Architects: Implementing edge and IoT systems from sensors to clouds with communication systems, analytics, and security*. Packt Publishing Ltd; 2020 Mar 6.

[24] Berger ML, Mamdani M, Atkins D, Johnson ML. Good research practices for comparative effectiveness research: defining, reporting and interpreting nonrandomized studies of treatment effects using secondary data sources: the ISPOR Good Research Practices for Retrospective Database Analysis Task Force Report—Part I. *Value in health*. 2009 Nov;12(8):1044-52.

[25] Chen H, Wen Y, Huang Y, Xiao C, Sui Z. Edge Computing Enabling Internet of Ships: A Survey on Architectures, Emerging Applications, and Challenges. *IEEE Internet of Things Journal*. 2024 Nov 5.

[26] Ferreira C, Gonçalves G. Remaining Useful Life prediction and challenges: A literature review on the use of Machine Learning Methods. *Journal of manufacturing systems*. 2022 Apr 1;63(May):550-62.

[27] Parsons MA, Robinson KM, Kara MY, Stinson NT, Snyder DJ, Woodward DC, Brown AJ. Application of a distributed system architectural framework to naval ship concept and requirements exploration. *Naval Engineers Journal*. 2020 Dec 1;132(4):105-24.

[28] Hassan SM. Application of Artificial Intelligence in Marine Engine Control System: Recent Advancements.

[29] Tebni D. The digital platforms in the maritime industry: An exploratory case study of two multisided digital platforms (Master's thesis, University of South-Eastern Norway).

[30] Drozhzhyn OL. IoT in container shipping industry: applications and examples of solutions. *Systems and Technologies*. 2024 Dec 17;68(2):112-20.

[31] Christos SC, Panagiotis T, Christos G. Combined multi-layered big data and responsible AI techniques for enhanced decision support in Shipping. In 2020 International Conference on Decision Aid Sciences and Application (DASA) 2020 Nov 8 (pp. 669-673). IEEE.

[32] Nguyen M, Tran L. From Shore to Sea: IoT Solutions for Enhanced Vessel Monitoring and Maritime Safety. *Asian American Research Letters Journal*. 2024 Jun 8;1(4).

[33] Islam SM, Munasinghe M, Clarke M. Making long-term economic growth more sustainable: evaluating the costs and benefits. *Ecological Economics*. 2003 Dec 1;47(2-3):149-66.

[34] Angell LC, Klassen RD. Integrating environmental issues into the mainstream: an agenda for research in operations management. *Journal of operations management*. 1999 Aug 1;17(5):575-98.

[35] Bonilla SH, Silva HR, Terra da Silva M, Franco Gonçalves R, Sacomano JB. Industry 4.0 and sustainability implications: A scenario-based analysis of the impacts and challenges. *Sustainability*. 2018 Oct 17;10(10):3740.