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With the continuous development of drone technology, rapid exploration 
strategies are of significant importance for tasks such as search and rescue 
and surveying. Current autonomous exploration systems often face issues 
of partial small-area information omission in cluttered environments, 
leading to repeated visits by drones. This paper proposes an improved 
multi-drone autonomous exploration system, which introduces a novel 
mode-switching mechanism based on a rapid autonomous exploration 
framework. This mechanism dynamically adjusts the exploration mode 
of the drones using the density information of surrounding obstacles. 
By doing so, drones can avoid missing small pieces of information that 
result in repeated visits in complex environments, while maintaining high 
exploration efficiency in simpler environments. This flexible exploration 
planning approach effectively addresses varying levels of environmental 
complexity. Evaluations conducted in three different environments of 
varying complexity demonstrate that the proposed method achieves higher 
exploration efficiency and reconstruction quality.
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1. INTRODUCTION

In modern society, indoor building environments are 
frequently accessed by people. During disasters, minimiz-
ing secondary casualties is critical, and robots become an 
essential solution. Due to the lack of detailed information 
about the task area and the complexity of indoor environ-
ments, GPS signals often become weak or unavailable, 
limiting robotic search and rescue operations. In such 
cases, autonomous exploration and visual positioning 
technologies are crucial tools. Autonomous exploration 
enables robots to independently navigate disaster-stricken 
buildings, search for victims, and assess potential hazards, 

reducing the risk of further injuries.
Utilizing visual or radar-based positioning technologies 

such as VINS or SLAM, robots can accurately determine 
their location without GPS and build real-time maps of 
the environment, improving obstacle avoidance and nav-
igation capabilities. Thus, the application of autonomous 
exploration technology in robots significantly enhances 
the efficiency and safety of rescue operations.

In recent years, Unmanned Aerial Vehicles(UAV) have 
demonstrated exceptional adaptability in various explora-
tion tasks due to their small size and flexibility, particular-
ly in complex indoor environments. These include narrow 
corridors and intricate stair structures filled with obstacles. 
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With advanced sensing technologies, drones can auton-
omously plan paths, explore environments, and quickly 
adapt to changes, completing pre-rescue exploration tasks 
efficiently. This reduces the risk to rescue personnel and 
significantly improves the efficiency of rescue operations. 
As drone technology advances, the limitations of sin-
gle-drone missions in largescale scenarios have led to the 
development of multi-drone systems. Compared to a sin-
gle drone, multiple drones can cover more areas simulta-
neously, greatly enhancing search efficiency and reducing 
rescue time, making operations faster and more efficient.

This paper focuses on decentralized multidrone au-
tonomous exploration technology, aiming to complete 
exploration tasks quickly in cluttered environments with 
unevenly distributed obstacles. The goal is to achieve 
comprehensive map coverage while minimizing repeated 
visits and task switching. We propose a mode-switching 
algorithm that allows drones to adaptively switch explora-
tion modes based on their environment without changing 
their assigned tasks. Drones can explore quickly in simple 
environments and conduct detailed exploration in obsta-
cle-dense areas to avoid missing information and repeated 
visits. Multi-robot coordination is achieved through direct 
point-to-point communication in a decentralized manner, 
with a task allocation module reasonably dividing the are-
as to be explored. We tested the proposed method in three 
different maze simulations, evaluating its performance. 
The results revealed the method’s superior efficiency, 
achieving higher overall drone speed and shorter explora-
tion times.

The main contributions of this paper are as follows:
•  Implementing mode-switching in exploration con-

sidering the varying complexity of different areas 
without changing the task.

•  Conducting extensive simulation evaluations demon-
strating superior performance compared to existing 
technologies.

2. RELATED WORK

For many years, researchers have focused on mobile 
robot exploration in unknown environments. The current 
mainstream approach for autonomous exploration is fron-
tier-based, emphasizing the planning of efficient explora-
tion paths to create more complete maps in less time, with 
shorter distances, and lower energy consumption. Fron-
tiers are defined as the boundaries between known and 
unknown spaces, a concept first introduced by Yamauchi 
et al. in 1997 [1]. They used frontiers to identify informa-
tion-rich areas and plan paths sequentially. Subsequent re-
search introduced information gain to evaluate candidate 
actions and balance exploration time and information gain 

based on the environment, as seen in Stachniss et al.’s 
work [2-3].

Frontier-based methods and Next-Best-View approach-
es typically consider only the information gain of the 
next exploration viewpoint, neglecting the information 
gain along the path to the next viewpoint. Bircher et al. [4] 
proposed the Receding Horizon Next-Best-View planner 
(RH-NBVP), which finds the best branch in a computed 
random tree and repeats the process for better exploration 
of large environments. Some papers, like Meng et al. [5], 
combined frontier with sampling methods to improve 
computational efficiency by sampling viewpoints around 
the frontier. Recently, Zhou et al. [6] introduced a meth-
od using incremental frontier detection and surrounding 
viewpoint sampling to generate effective global paths, 
achieving safe and agile local exploration operations. Du-
berg et al. [7] argued that the size of the information gain is 
not crucial, instead selecting view-points with information 
gain above a threshold and then moving to the nearest 
one.

To further improve exploration efficiency and reduce 
time, early papers like [8] proposed multirobot collabora-
tion, initially using centralized communication and task 
allocation via a central server. Burgard et al. [9] coordi-
nated multi-robot tasks by greedily choosing robot-target 
pairs based on distance and information gain. Tian et al. [10]  
introduced the multi-Travelling Salesman Problem 
(mTSP) to allocate robots to candidate frontiers. However, 
real-world factors like environment complexity and server 
reliability affect communication quality, leading to de-
centralized coordination methods. The first decentralized 
multi-robot exploration, developed by Palazzolo et al. [11], 
had robots share map information and move to the nearest 
frontier. Despite its simplicity, coordination was ineffec-
tive without central control. Kabir et al. [12] and Yu et al. [13]  
proposed methods to mitigate these issues, but required 
stable communication. Klodt et al. [14] reduced commu-
nication dependency through pairwise interactions, and 
Zhou et al. [15] introduced a method to divide navigation 
areas and ensure different exploration regions, enhancing 
robustness for limited communication.

However, Bartolomei et al. [16] highlighted that Zhou’s 
method assumes uniform obstacle distribution, leading 
to decreased coordination in cluttered environments and 
leaving unexplored islands. They proposed a flexible 
task-switching navigator to address this, changing some 
UAVs’ tasks to clear unknown spaces. This improved effi-
ciency but altered local tasks. To avoid this, we developed 
a new mode-switching method that adjusts path planning 
costs based on environmental complexity, ensuring slow 
and cautious exploration in complex environments to 
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avoid missing small areas and reducing repeated visits. 
This approach enhances task efficiency without changing 
UAV tasks.

3. METHODOLOGY

3.1 System Overview

The overall system design is depicted in Figure 1. This 
study focuses on exploring unknown environments with 
communication constraints using UAVs equipped with 
front-facing depth cameras. We employ the Visual-Inertial 
Navigation System (VINS) method as outlined in [17] for 
distributed state estimation, ensuring accurate localization 
of both self and other quadcopters.

Our approach utilizes a decentralized coordination 
strategy where agents exchange map information, view-
points, execution modes, and planned trajectories to allo-
cate exploration areas and collaborate on map construc-
tion. Each UAV operates through a pipeline consisting of 
three main components: mapping system, collaborative 
task allocator, mode selector, and path planner.

Inspired by reference [16], we have also developed a 
mode-switching algorithm. The mapping system generates 
a voxel grid map of the environment using odometry and 
depth information [30]. With each update, newly observed 
voxels are stored in blocks and communicated to nearby 
UAVs. Next, Frontiers are extracted and clustered. Sub-
sequently, using paired interactions and the Capacitated 
Vehicle Routing Problem (CVRP) formula [15], UAV tasks 
are coordinated. Upon receiving their respective tasks, 

UAVs plan exploration routes, extracting frontier informa-
tion to identify viewpoints at boundaries between known 
and unknown maps.

Time lower bounds related to path time cost and angu-
lar velocity cost are obtained using ATSP to stratify UAVs 
for global and local path planning. The mode switcher 
determines mode switching based on the density of sur-
rounding obstacles. Specifically, point cloud information 
from the mapping system is used to extract obstacle in-
formation. Gaussian distribution sampling is performed 
on this information to determine obstacle density, dynam-
ically triggering mode switches. Different modes assign 
varying speeds, task boundaries, and proportions of path 
time cost and angular velocity cost to UAVs.

3.2 Multi-Task Allocation

In this study, we adopt the Hgrid map division method 
mentioned in [2]. For multi-task allocation, we employ 
the vehicle routing problem (VRP). In a standard VRP, 
routes form closed loops from a central depot. However, 
since exploration tasks lack a central depot, [2] introduces 
a virtual depot and designs connection costs to reduce this 
variant to an asymmetric VRP. Following this approach, 
we design the CVRP formula. Suppose there are gN  
grid cells and xN  UAV nodes. The relevant cost matrix 
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Formula 1 represents a basic CVRP cost matrix. Since drones do not need to return to the same point, all
diagonal elements of the cost matrix are set to 0. In this matrix, − Inf, denotes the connection cost from the
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1) Fast Exploration Mode: Driven by frontiers, the goal of the fast exploration mode is to cover large
previously unknown areas quickly. Considering that different factors need to be taken into account for path
planning in various environments, we processed the most important time cost � from [6], changing the original
method of directly selecting the maximum of the path time cost ,� and the turning time cost ,� to a
weighted sum method:
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Formula 1 represents a basic CVRP cost matrix. Since 
drones do not need to return to the same point, all diag-
onal elements of the cost matrix are set to 0. In this ma-
trix, –Infd,x denotes the connection cost from the virtual 
depot to all drones, set to a large negative value to allow 
direct connections between the virtual depot node and 
the drones. Infd,g and Infd,x represent the connection costs 
from the virtual depot to grid cells and from drones to 
the virtual depot, respectively, both set to a large positive 
value to prohibit infeasible paths. Infx represents the con-
nection costs between different drones, with all elements 
except the diagonal set to a large positive value to indicate 
infeasible paths. Cx,g denotes the connection costs between 
drones and grid cells, while Cg represents the connection 
costs between grid cells, typically calculated using the 
path length Len(·).

3.3 Exploration Planning

In this paper, the boundary is obtained using the meth-
od in [6]. Then, sampling is performed uniformly in a cy-
lindrical coordinate system centered at the cluster center 
to obtain viewpoints with coverage angles greater than the 
threshold. The angle with the largest coverage is selected 
as the angle bound to the viewpoint. Each viewpoint qi,j is 
represented by its position and yaw angle 
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turning time cost  . This encourages the drones to explore unknown areas more greedily, similar to the approach
described in the paper [7], thereby improving exploration efficiency.

Subsequently, following the method outlined in [6], we constructed an Asymmetric Traveling Salesperson
Problem (ASTP) to find a complete path passing through each cluster. The cost from the current position 0 =
0,0 to the � clusters is calculated as shown in Formula 5(In the formula  ∈ 1,� )
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To achieve more consistent movement and limit excessive turns, avoiding UAVs from frequently switching
between different target points with similar ��� values, we calculate the angle between the current direction and the
target direction, where 0 is the current velocity:
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Here, , represents the current position of the drone, 0 is the position of the drone before it moved, and 0 is
the speed of the drone.

The cost between each cluster and the current position 0 is then uniformly set to 0. This avoids the exploration
task forming a closed loop, allowing it to be converted into a traditional ATSP problem for processing.
Disconnecting the closedloop path does not affect the optimality of the result.

 is the main symmetric block recording the connection costs between clusters, primarily the time cost from
each cluster to other clusters:
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2) Cautious Exploration Mode: The cautious exploration mode aims to avoid small unexplored areas in
complex environments as much as possible, preventing the need to revisit less explored areas on the map after the
mission ends. In simple or open environments, drones can fly and explore in straight or near-straight paths, with
small turns, making path costs generally more important than turning costs. However, in complex environments,
such as narrow urban streets, forests, or building interiors, frequent turns and obstacle avoidance make turning
costs more significant. In cautious exploration mode, drones reduce their maximum speed � and adjust the
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Here, pk,j represents the current position of the drone, p0 
is the position of the drone before it moved, and v0 is the 
speed of the drone.

The cost between each cluster and the current position 
x0 is then uniformly set to 0. This avoids the exploration 
task forming a closed loop, allowing it to be converted 
into a traditional ATSP problem for processing. Discon-
necting the closedloop path does not affect the optimality 
of the result.

Cf is the main symmetric block recording the connec-
tion costs between clusters, primarily the time cost from 
each cluster to other clusters:
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2) Cautious Exploration Mode: The cautious explo-
ration mode aims to avoid small unexplored areas in 
complex environments as much as possible, preventing 
the need to revisit less explored areas on the map after 
the mission ends. In simple or open environments, drones 
can fly and explore in straight or near-straight paths, with 
small turns, making path costs generally more important 
than turning costs. However, in complex environments, 
such as narrow urban streets, forests, or building interiors, 
frequent turns and obstacle avoidance make turning costs 
more significant. In cautious exploration mode, drones 
reduce their maximum speed vmax and adjust the weights 
in the time lower bound function, increasing the weight 
of the turning time cost wT and decreasing the weight of 
the path time cost wL. This gives a new time lower bound 
tlb, which is then used in the ATSP formula, making the 
drones explore more cautiously, reducing missed informa-
tion. This also avoids large turns, maintaining safety while 
exploring unknown areas as thoroughly as possible.

3.4 Environmental Complexity Mode Switching

In both exploration and planning tasks, assessing en-
vironmental complexity is crucial as it directly impacts 
robot performance, task success rates, and resource con-
sumption. For instance, as discussed in [18], environmental 
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complexity is determined by the number of obstacles 
surrounding the drone. In this study, we simplify obsta-
cle detection using point cloud data segmentation, where 
obstacles are reduced to points to determine levels of 
environmental complexity. We employ a region growing 
algorithm for cluster segmentation,

(a) Obstacle Informa-

(b) Sampling Points tion Extraction. Visualization
Figure 2. Extraction and Augmentation of Environmental 
Information: In figure (a), the green points represent the 
clustering results, while in figure (b), the small points of 
various colors represent the Gaussian distribution sam-

pling results.

dividing the point cloud data P into n subregions 
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weight of the path time cost  . This gives a new time lower bound tlb

' , which is then used in the ATSP formula,
making the drones explore more cautiously, reducing missed information. This also avoids large turns, maintaining
safety while exploring unknown areas as thoroughly as possible.
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In both exploration and planning tasks, assessing environmental complexity is crucial as it directly impacts robot
performance, task success rates, and resource consumption. For instance, as discussed in [18], environmental
complexity is determined by the number of obstacles surrounding the drone. In this study, we simplify obstacle
detection using point cloud data segmentation, where obstacles are reduced to points to determine levels of
environmental complexity. We employ a region growing algorithm for cluster segmentation,
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Fig. 2: Extraction and Augmentation of Environmental Information: In figure (a), the green points represent the clustering
results, while in figure (b), the small points of various colors represent the Gaussian distribution sampling results.

dividing the point cloud data P into n subregions 1,2, …,, each representing a distinct obstacle.
Reducing obstacle information to points via clustering significantly reduces the data to be processed. To

obtain more usable information for subsequent analysis, we randomly sample around these simplified obstacle
points to obtain N threedimensional sampling points X = { xi, yi, zi }i=1

N , which follow a multivariate normal
distribution μ, Σ .

Taking inspiration from [19], in this study, we construct a square sliding window centered at the current
drone position � to delineate local environmental regions for computation purposes. We measure
environmental complexity using information entropy. Specifically, we assume each dimension is divided into
,,  grids. We initialize a three-dimensional matrix G of size  ×  ×  and traverse all sampling points.
Based on their grid indices, we increment corresponding counts in the matrix.
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Here, x represents the coordinates of the sampling points. After traversal, we obtain the matrix
G indexxx, indexxy, indexxy containing the number of sampling points in each grid. We then calculate the
probability distribution of the sampling points in each grid:
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where Pijk is the probability of sampling points in the (i,j,k) grid. Next, we calculate the information entropy
within the sliding window:
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points to obtain N threedimensional sampling points X = { xi, yi, zi }i=1

N , which follow a multivariate normal
distribution μ, Σ .

Taking inspiration from [19], in this study, we construct a square sliding window centered at the current
drone position � to delineate local environmental regions for computation purposes. We measure
environmental complexity using information entropy. Specifically, we assume each dimension is divided into
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Here, x represents the coordinates of the sampling points. After traversal, we obtain the matrix
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where Pijk is the probability of sampling points in the (i,j,k) grid. Next, we calculate the information entropy
within the sliding window:
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In both exploration and planning tasks, assessing environmental complexity is crucial as it directly impacts robot
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detection using point cloud data segmentation, where obstacles are reduced to points to determine levels of
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Reducing obstacle information to points via clustering significantly reduces the data to be processed. To

obtain more usable information for subsequent analysis, we randomly sample around these simplified obstacle
points to obtain N threedimensional sampling points X = { xi, yi, zi }i=1

N , which follow a multivariate normal
distribution μ, Σ .

Taking inspiration from [19], in this study, we construct a square sliding window centered at the current
drone position � to delineate local environmental regions for computation purposes. We measure
environmental complexity using information entropy. Specifically, we assume each dimension is divided into
,,  grids. We initialize a three-dimensional matrix G of size  ×  ×  and traverse all sampling points.
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where Pijk is the probability of sampling points in the (i,j,k) grid. Next, we calculate the information entropy
within the sliding window:
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obtain more usable information for subsequent analysis, we randomly sample around these simplified obstacle
points to obtain N threedimensional sampling points X = { xi, yi, zi }i=1

N , which follow a multivariate normal
distribution μ, Σ .

Taking inspiration from [19], in this study, we construct a square sliding window centered at the current
drone position � to delineate local environmental regions for computation purposes. We measure
environmental complexity using information entropy. Specifically, we assume each dimension is divided into
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Based on their grid indices, we increment corresponding counts in the matrix.
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where Pijk is the probability of sampling points in the (i,j,k) grid. Next, we calculate the information entropy
within the sliding window:
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N , which follow a multivariate normal
distribution μ, Σ .

Taking inspiration from [19], in this study, we construct a square sliding window centered at the current
drone position � to delineate local environmental regions for computation purposes. We measure
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where Pijk is the probability of sampling points in the (i,j,k) grid. Next, we calculate the information entropy
within the sliding window:
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where Pijk is the probability of sampling points in the 
(i,j,k) grid. Next, we calculate the information entropy 
within the sliding window:
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To avoid log(0), a small value ϵ is added.The resulting information entropy represents the environmental
complexity

In specific exploration tasks, When the environmental complexity within the UAV’s sliding window exceeds
a threshold � , indicating a high-complexity environment, the UAV switches to cautious exploration mode.
Conversely, if the number of sampling points around the UAV is less than �, indicating a low-complexity
environment, the UAV switches to fast exploration mode. For complexity levels between � and �, mode
switching is not directly triggered. Instead, we simulate the complexity change rate based on the rate of change
in the number of sampling points within the UAV’s sliding window. The UAV’s previous exploration mode and
the trend in sampling point changes determine whether to switch modes. The rate of change a is calculated as
follows:
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where � is the mean of the time series, and ¯n is the mean of the sampling points. The slope a indicates the
trend. When the number of sampling points is between� and �:

• If a > 0, indicating an increase in sampling points, and exceeds ℎℎ, it suggests the UAV has entered a
cluttered environment. If the UAV is in fast exploration mode, it should switch to cautious exploration mode.

• If a < 0, indicating a decrease in sampling points, and is below ℎ , it suggests the UAV has entered an open
environment. If the UAV is in cautious exploration mode, it should switch to fast exploration mode.

• If a is between ℎℎ, and ℎ, the environmental change is not significant, and the UAV continues in its current
mode without switching.
The thresholds ℎℎ, and ℎ are small positive and negative values of equal magnitude, respectively. This

method ensures efficient mode switching based on real-time environmental complexity, optimizing the UAV’s
exploration efficiency.

4. EXPERIMENTS
4.1 Results of Different Multi-UAV Exploration Methods in Various Environments

To evaluate the performance and feasibility of the proposed method, we used the dynamics simulator from [15] for
simulation. Each agent is equipped with a forward-facing depth camera with a resolution of 640 × 480 pixels and a
field of view of 80◦ × 60◦. Depth images are processed using the method in [17], with a maximum perception range
of 5m. The maximum linear and angular velocities of the drones are set to 1.5m/s and 0.9rad/s, respectively. We
compared the exploration process with RACER [15] and a Ufoexplorer-like algorithm [7] to verify the time
required to complete scene exploration and the completeness of the established map. The core of the Ufoexplorer
algorithm is selecting the nearest viewpoints; in our experiments, we implemented this by setting the path cost
weight to 1 and the corner cost weight to 0.

We tested three scene sizes: a simple maze with dead ends 20m×20m×2m, a more complex maze with dead
ends and loops 30m × 16m × 2m, and a highly cluttered maze with unevenly distributed obstacles 20m × 14m × 2m.
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where � is the mean of the time series, and ¯n is the mean of the sampling points. The slope a indicates the
trend. When the number of sampling points is between� and �:

• If a > 0, indicating an increase in sampling points, and exceeds ℎℎ, it suggests the UAV has entered a
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field of view of 80◦ × 60◦. Depth images are processed using the method in [17], with a maximum perception range
of 5m. The maximum linear and angular velocities of the drones are set to 1.5m/s and 0.9rad/s, respectively. We
compared the exploration process with RACER [15] and a Ufoexplorer-like algorithm [7] to verify the time
required to complete scene exploration and the completeness of the established map. The core of the Ufoexplorer
algorithm is selecting the nearest viewpoints; in our experiments, we implemented this by setting the path cost
weight to 1 and the corner cost weight to 0.

We tested three scene sizes: a simple maze with dead ends 20m×20m×2m, a more complex maze with dead
ends and loops 30m × 16m × 2m, and a highly cluttered maze with unevenly distributed obstacles 20m × 14m × 2m.

 is the mean of the time series, and ¯n is the 
mean of the sampling points. The slope a indicates the 
trend. When the number of sampling points is between 
nmin and nmax:

•  If a > 0, indicating an increase in sampling points, 
and exceeds hthr it suggests the UAV has entered a 
cluttered environment. If the UAV is in fast explora-
tion mode, it should switch to cautious exploration 
mode.

•  If a < 0, indicating a decrease in sampling points, 
and is below lthr, it suggests the UAV has entered 
an open environment. If the UAV is in cautious ex-
ploration mode, it should switch to fast exploration 
mode.

•  If a is between hthr, and lthr, the environmental change 
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is not significant, and the UAV continues in its cur-
rent mode without switching.

The thresholds hthr, and lthr are small positive and nega-
tive values of equal magnitude, respectively. This method 
ensures efficient mode switching based on real-time envi-
ronmental complexity, optimizing the UAV’s exploration 
efficiency.

4. EXPERIMENTS

4.1 Results of Different Multi-UAV Exploration 
Methods in Various Environments

To evaluate the performance and feasibility of the pro-
posed method, we used the dynamics simulator from [15]  
for simulation. Each agent is equipped with a forward-fac-
ing depth camera with a resolution of 640 × 480 pixels and 
a field of view of 80◦ × 60◦. Depth images are processed 
using the method in [17], with a maximum perception range 
of 5m. The maximum linear and angular velocities of the 
drones are set to 1.5m/s and 0.9rad/s, respectively. We 

compared the exploration process with RACER [15] and a 
Ufoexplorer-like algorithm [7] to verify the time required 
to complete scene exploration and the completeness of the 
established map. The core of the Ufoexplorer algorithm is 
selecting the nearest viewpoints; in our experiments, we 
implemented this by setting the path cost weight to 1 and 
the corner cost weight to 0.

We tested three scene sizes: a simple maze with dead 
ends 20m×20m×2m, a more complex maze with dead ends 
and loops 30m × 16m × 2m, and a highly cluttered maze 
with unevenly distributed obstacles 20m × 14m × 2m.

  (a) Simple              (b) Complex                 (c) Highly
Figure 3. Three schematic diagrams depicting mazes of 

varying complexity.

Through testing each algorithm in different environ-
ments, we obtained the results shown in the Table 1.

Table 1. Map coverage and exploration efficiency data achieved by different numbers of drones using different methods 
in different environments.

num Simple Complex Highly Complex

1 RACER 96.16% ± 1.52% 111.16s ± 10.15 96.61% ± 1.61% 114.15s ± 10.21 96.34% ± 1.76% 116.23s ± 10.12

Ufoexplorer 96.14% ± 1.24% 110.31s ± 9.75 96.10% ± 1.65% 117.36s ± 11.02 96.01% ± 1.81% 121.80s ± 11.41

Ours 97.33% ± 0.51% 95.24s ± 5.17 97.42% ± 0.53% 103.98s ± 5.23 97.46% ± 0.63% 91.31s ± 5.14

2 RACER 96.19% ± 1.31% 97.69s ± 10.05 96.69% ± 1.60% 99.19s ± 10.07 96.40% ± 1.71% 101.33s ± 10.13

Ufoexplorer 96.21% ± 1.21% 95.50s ± 9.51 96.17% ± 1.62% 102.21s ± 10.53 96.21% ± 1.79% 107.65s ± 10.21

Ours 98.04% ± 0.45% 76.82s ± 5.04 98.03% ± 0.43% 79.68s ± 4.91 97.46% ± 0.57% 74.62s ± 4.87

4 RACER 96.46% ± 1.28% 76.15s ± 9.34 96.72% ± 1.31% 79.21s ± 9.65 96.79% ± 1.48% 78.70s ± 9.62

Ufoexplorer 96.63% ± 1.17% 73.13s ± 9.12 96.52% ± 1.38% 83.12s ± 9.78 96.49% ± 1.63% 84.75s ± 9.77

Ours 98.24% ± 0.43% 65.42s ± 4.56 98.31% ± 0.42% 68.42s ± 4.71 98.23% ± 0.51% 62.37s ± 4.09

6 RACER 96.82% ± 1.19% 67.31s ± 9.12 96.94% ± 1.28% 69.74s ± 9.15 96.61% ± 1.49% 68.72s ± 9.08

Ufoexplorer 96.99% ± 1.16% 64.14 ± 8.98s 96.56% ± 1.31% 73.14s ± 9.41 96.64% ± 1.52% 75.71s ± 9.16

Ours 98.23% ± 0.47% 61.48s ± 4.12 98.21% ± 0.43% 63.07s ± 4.67 98.12% ± 0.52% 56.83s ± 4.11

8 RACER 96.36% ± 1.49% 65.11s ± 9.21 96.72% ± 1.42% 69.12s ± 9.72 96.52% ± 1.53% 67.79s ± 9.12

Ufoexplorer 96.32% ± 1.38% 62.68s ± 8.03 96.64% ± 1.45% 72.71s ± 10.13 96.43% ± 1.57% 74.12s ± 9.29

Ours 98.13% ± 0.49% 58.28s ± 3.98 98.19% ± 0.47% 62.15s ± 4.93 98.21% ± 0.61% 56.75s ± 4.41

Figure 4: Illustration of exploration efficiency achieved by different numbers of drones using different methods in dif-
ferent environments.
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From Figure 3, it is evident that in relatively simple 
environments, the efficiency of Ufoexplorer, which con-
siders only path costs, is superior to RACER. This is 
because in simple environments, which are mostly open 
spaces, Ufoexplorer greedily explores based on path costs. 
However, during experiments, it was found that Ufoex-
plorer struggles more than RACER when encountering 
dead ends, resulting in similar performance between the 
two algorithms overall. RACER considers both path costs 
and the maximum angle cost, prioritizing lowering the 
path cost when facing dead ends to swiftly find an escape 
route. Continuously prioritizing low path costs might lead 
the drone to repeatedly attempt to navigate out of dead 
ends without making necessary turns.

Therefore, compared to Ufoexplorer, our mode-switch-
ing approach takes such situations into account. It not only 
enables fast exploration in open spaces similar to Ufoex-
plorer but also efficiently navigates out of dead ends akin to 
RACER, achieving higher exploration efficiency. In more 
complex mazes with numerous obstacles, the importance of 

angle costs becomes more apparent to enhance exploration 
efficiency and flight stability. Hence, in such scenarios, 
RACER generally outperforms Ufoexplorer. However, 
our mode-switching improvement method also performs 
reliably in complex environments with multiple obstacles, 
maintaining stable completion of exploration tasks.

In the last type of maze, characterized by numerous un-
evenly distributed obstacles, we designed the environment 
with partial open spaces and partially complex and uneven 
areas. Despite this map being the smallest, exploration 
time is longer compared to the previous two maps for both 
RACER and Ufoexplorer. Our modeswitching improve-
ment method balances path costs and angle costs during 
operation, thereby achieving better operational efficiency. 
Additionally, by observing the error values of different 
algorithms, it is clear that our designed algorithm not only 
outperforms others in terms of performance but also ex-
hibits superior stability during operation. Lower and less 
fluctuating error values indicate consistent efficiency and 
reliability over prolonged operation.

Figure 5. Illustration of the exploration efficiency of four drones under different environmental measurement methods.

Overall, these analytical results thoroughly demon-
strate the superiority and practicality of our algorithm. 
By offering higher exploration efficiency and more stable 
operational performance, our algorithm provides a more 
efficient and reliable solution for multi-UAV cooperative 
exploration tasks.

4.2 The impact of environmental complexity mea-
surement methods

To demonstrate the effectiveness of the entropybased 
environmental complexity measurement method used in 
this experiment, we conducted tests using four UAVs in 
the three environments from the previous experiments. We 

compared the efficiency of the Hamming distance method, 
the obstacle density method, and the entropy method as 
outlined in [18]. The results are presented in Table 2.

Table 2. Exploration efficiency data of four drones under 
different environmental measurement methods.

method Simple Complex Highly Complex

Hamming distance 70.75s ± 6.86 74.42s ± 5.51 72.71s ± 6.61

Obstacle density 70.36s ± 7.56 75.42s ± 7.98 74.93s ± 8.39

Information Entropy 65.42s ± 4.56 68.42s ± 4.71 62.37s ± 4.09

As shown in Figure 5, We used information entropy as 
a measure of environmental complexity, which outper-
formed Hamming distance and obstacle density methods 
in all three types of environments. The error bars in the 
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figures also indicate better stability. Unlike the Hamming 
distance, which only compares differences between rows 
and columns within a sliding window, we represent ob-
stacles as ones and free spaces as zeros in a binary pixel 
matrix, treating uncertain areas in unknown environments 
as zeros like free spaces. While the Hamming distance 
method performs better than simple obstacle density in 
complex and moderately complex environments, it doesn’t 
consider the probability distribution and uncertainty of the 
data, making it less comprehensive in reflecting environ-
mental complexity. Thus, the information entropy method 
is more effective in measuring environmental complexity.

5. CONCLUSIONS

The primary objective of our work is to develop a 
multi-UAV autonomous exploration system capable of 
completing environment exploration in complex settings 
with numerous and unevenly distributed obstacles while 
ensuring map integrity. To achieve this, we have incorpo-
rated a modeswitching feature into the rapid autonomous 
exploration framework. This feature leverages the recon-
structed spatial information from the mission, analyzes 
surrounding obstacle information to determine environ-
mental complexity, and adaptively switches modes based 
on the complexity and previous mode.

Through this mode-switching system, UAVs can auton-
omously balance cautious exploration of unknown spaces 
with more aggressive exploration. This approach enhanc-
es the efficiency and reliability of multi-UAV cooperative 
exploration in complex environments while maintaining 
rapid exploration in simpler environments. In the future, 
we plan to apply more advanced reinforcement learning 
methods to improve the accuracy of UAV environmental 
assessments. Additionally, we intend to implement our 
current method in search and rescue systems to validate 
the feasibility and superiority of the rapid autonomous ex-
ploration approach in real-world applications.
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