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Droplet microfluidics, which encapsulates individual cells within separate 
microreactors, has become an essential tool for single-cell phenotypic and 
genotypic analysis. However, the efficiency of single-cell encapsulation 
is limited by the Poisson distribution governing the encapsulation 
process, resulting in most droplets being either empty or containing 
multiple cells. Traditional single-cell sorting methods typically rely on 
fluorescence labeling for identification, but this approach not only increases 
experimental costs and complexity but can also impact cell viability. 
Additionally, current label-free sorting methods still encounter difficulties 
in accurately detecting multicellular droplets and small cellular aggregates. 
To address these challenges, this paper proposes an intelligent sorting 
system that combines YOLOv8 object detection and BoTSORT tracking 
algorithms. This system enables real-time analysis of droplet images, 
facilitating precise identification, counting, and automated sorting of target 
droplets. To validate the system’s performance, polystyrene microspheres 
were used to simulate real cells in sorting tests. The results demonstrated 
that, under label-free conditions, the system significantly outperformed 
traditional fluorescence labeling methods in both classification accuracy 
and sorting efficiency. This system provides an effective, label-free solution 
for cell sorting, with potential applications in precision medicine, single-
cell sequencing, and drug screening.
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1. Introduction

With the rapid development of single-cell analysis 
technologies, droplet microfluidics has become a vital tool 
for examining the phenotypic and genotypic characteris-
tics of individual cells. By encapsulating individual cells 
within microdroplets, this technology creates a biomimet-
ic microenvironment that enables precise biological and 
molecular analyses in a controlled setting(Gardner et al., 

2022). Its emergence has provided robust support for a 
range of biomedical applications, including cell therapy, 
early disease diagnosis, and drug screening.

However, despite its many advantages, droplet micro-
fluidics still faces significant technical challenges. One 
major issue is the phenomenon of multicell co-encapsu-
lation, which greatly reduces the efficiency and reliability 
of single-cell analyses. Due to the Poisson distribution 
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that governs the encapsulation process, only about 36% 
of the droplets contain a single cell, while the majority are 
either empty or contain multiple cells(Link et al., 2022). 
This results in a biological throughput that is roughly 
three times lower than the physical throughput, limiting 
the practical effectiveness of the technology. Moreover, 
the co-encapsulation of multiple cells compromises the 
precision of single-cell analysis and hinders applications 
such as single-cell sequencing, drug screening, and cell 
therapy(Zhong et al., 2023). Therefore, improving the pu-
rity of single-cell encapsulation and preventing multi-cell 
co-encapsulation have become key challenges in advanc-
ing droplet microfluidic technology.

Currently, droplet microfluidic sorting techniques can 
be broadly classified into passive and active methods. Pas-
sive sorting relies on the inherent channel geometry and 
hydrodynamics, such as deterministic lateral displacement 
(DLD)(Hochstetter et al., 2020) and inertial microfluid-
ics(Kemna et al., 2012) to separate cells. Although these 
methods are straightforward and offer high throughput, 
they lack real-time controllability and flexibility, and their 
accuracy is often insufficient for complex applications. In 
contrast, active sorting employs external force fields, such 
as electric, magnetic, acoustic, pneumatic, or thermal to 
precisely control and sort droplets in real time(Xi et al., 
2017). However, active sorting methods typically depend 
on fluorescence labeling for cell identification. While flu-
orescence labeling can achieve high recognition accuracy, 
it also has notable drawbacks: it may alter the intrinsic 
properties of cells and can introduce issues related to cy-
totoxicity and biocompatibility. Recently, image-based, la-
bel-free sorting methods have been developed for live cell 
analysis  Advances in deep learning and machine learning 
have further opened new avenues for non-invasive, la-
bel-free cell sorting based on image analysis. Deep learn-
ing algorithms, particularly convolutional neural networks 
(CNNs), have shown superior performance in image anal-
ysis and feature extraction(Tang et al., 2023), enabling 
the automatic extraction of morphological features from 
cells. This capability allows for the accurate identification 
and sorting of single cells and multicellular aggregates in 
droplets. When integrated into microfluidic systems, these 
techniques facilitate real-time analysis of droplet contents, 
thereby improving sorting accuracy and throughput. For 
instance, Lewis Howell et al. developed a label-free sort-
ing system with feedback control using YOLOV4-tiny. 
This system automatically adjusts the flow rate based on 

detection accuracy and counting performance, thereby 
regulating the loading of microbeads(Howell et al., 2021). 
Despite these advances, current image-based label-free 
sorting systems still face challenges. Most existing sys-
tems rely on complex optical setups, which can reduce 
system robustness and increase costs. Additionally, their 
detection accuracy often falls short of the demands of 
high-precision applications.

To address these issues, this study presents an intel-
ligent sorting system that integrates YOLOv8 object 
detection with BoTSORT tracking algorithms to provide 
real-time statistical analysis, accurate droplet classifica-
tion, and dynamic tracking. This system not only simpli-
fies the experimental setup but also significantly enhances 
sorting accuracy. Compared with traditional cell labeling 
methods, our approach maintains high detection accuracy 
without the interference of cell labeling, offering greater 
flexibility and broader application potential. The modular 
design of our system allows it to be readily adapted for 
cutting-edge fields such as precision medicine research, 
single-cell sequencing, and cell therapy, thereby providing 
essential technical support and a new research platform 
for these areas.

2. Materials and methods

2.1 Microfluidic chip design

In this experiment, a flow-focusing structure is em-
ployed to generate droplets. The design of the droplet 
microfluidic sorting chip is created using CAD software, 
as shown in Figure 1. The chip features a channel depth 
of 80 microns, with a channel width of 80 microns before 
droplet formation and 120 microns after droplet gener-
ation. The chip structure includes two oil-phase inlets 
(labeled “Oil” in the figure), one Polystyrene-phase inlet 
(labeled “PS”), two collection outlets (labeled “Sorted” 
and “Waste”), and sorting electrodes (labeled “Electrode”) 
that generate dielectrophoretic forces. Figure 1a illustrates 
the flow-focusing structure designed to generate droplets 
encapsulating cells, Figure 1b shows the droplet sorting 
region, and Figure 1c displays the two collection chan-
nels. Surrounding the chip are 4MKCL saline grounding 
electrodes, which create the necessary electric field gradi-
ent for dielectrophoretic deflection. These electrodes also 
help limit stray electric fields that could cause droplets 
to accidentally merge within the channel. Once the chip 
design is finalized, the mask template is sent to Qingyi 
Optoelectronics in Shenzhen, China, for fabrication. 
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2.2 Microfluidic chip fabrication

The microfluidic chip is fabricated using a photolitho-
graphic master mold. To create the mold, SU-8 3050 pho-
toresist (Microchem) is spin-coated onto a 3-inch silicon 
wafer. The spin speed of SU-8 3050 is adjusted based on 
the desired channel height for the microfluidic chip. Ini-
tially, the photoresist is spin-coated onto the wafer at 1700 
rpm to achieve a thickness of approximately 80 microns. 
After pre-baking the wafer at 95°C for 15 minutes, a plas-
tic photomask is placed on top, and the wafer is exposed 
to 25 mW UV light (PR160L, Kessil) for 30 seconds. 
Following exposure, the wafer undergoes a post-exposure 
bake at 95°C for 5 minutes. The wafer is then developed 

in SU-8 developer (MicroChem) for around 15 minutes, 
after which the master mold is cleaned with isopropanol 
and ethanol, and dried with nitrogen gas. Next, PDMS 
(SYLGARD 184, Dow Corning) is mixed with a curing 
agent in a 10:1 weight ratio and poured over the master 
mold. The PDMS is cured overnight at 70°C in an oven. 
Once cured, the PDMS layer is peeled off the mold, and 
a 0.7 mm hole punch is used to create the inlets and out-
lets. The PDMS layer is then bonded to a clean glass slide 
using oxygen plasma treatment (Beijing Saiaote, YZD08-
2C). Finally, the chip is heated at 85°C for 45 minutes 
to improve the bonding strength. The chip fabrication 
process is illustrated in Figure 2a, and the finished chip is 
shown in Figure 2b.

Figure 1. Structure of microfluidic sorting chip.

Figure 2. (a) Microfluidic chip fabrication process; (b) The chip object.
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2.3 DEP Control Module Design

This study employs dielectrophoresis (DEP) technolo-
gy, whereby droplets in a liquid flow experience a force in 
a high-voltage AC electric field that causes them to shift 
toward one side.  Figure 3 illustrates the DEP sorting con-
trol unit, which is composed of two main modules. The 
first module, the waveform generation unit, includes an 
FPGA control program (signal generation) and an AD9708 
driver board (AD/DA conversion). The second module is 
the waveform amplification unit, which primarily consists 
of a voltage amplifier. The FPGA main program controls 
the sorting pulse signal generation by sending waveform 
control instructions to the AD9708. These instructions 
are transmitted between the modules to the AD9708’s in-
ternal register, prompting it to output a sinusoidal signal 
at a predetermined frequency and duration. This signal is 
then amplified externally into a high-voltage AC signal 
and transmitted via wires to the electrodes on the droplet 
microfluidic sorting chip, thereby applying the necessary 
electric field in the sorting region to direct the droplets.

2.4 Sorting and counting algorithm based on 
object detection and tracking

2.4.1 Data set collection and preparation

The image dataset was captured using an inverted CCD 
camera. HF-7500 fluorinated oil and a prepared suspen-
sion of polystyrene microspheres were introduced into the 
chip, where the designed flow-focusing structure reliably 
generated droplets encapsulating the microspheres. The 
inverted CCD camera then captured real-time images of 
the droplets, resulting in raw images with a resolution of 
1280×800 pixels. These images were manually selected 
and cropped to a size of 544×544 pixels. The images were 
then manually classified into four categories: (1) “0cell” 
for empty droplets, (2) “1cell” for droplets containing 
one polystyrene microsphere, (3) “2cell” for droplets 
containing two polystyrene microspheres, and (4) “3cell” 
for droplets containing three or more polystyrene micro-
spheres.

2.4.2 Training of the YOLO object detection 
model

After completing the dataset annotations, we parti-
tioned it into training (80%), validation (10%), and test 
(10%) subsets. The YOLOv8 neural network model(-
Glenn et al., 2023) was trained and tested on a Windows 
11 system equipped with a 64-bit operating system, an 
Intel i5-12500h 2.5 GHz processor, 16 GB RAM, and a 
CUDA-enabled NVIDIA GeForce 3050ti laptop GPU. 

Training the droplet classification model using YOLOv8 
took approximately 25 minutes. After 231 epochs, the 
model’s performance plateaued, achieving convergence 
with a mean Average Precision (mAP) of 98.8%, indicat-
ing excellent performance. Upon completion, we saved 
both the best-performing and the final training weights for 
future deployment applications.

2.4.3 BoTSORT object tracking algorithm

BoTSORT is a deep learning-based multi-object track-
ing algorithm(Aharon et al., 2022) designed to track 
detected objects across multiple consecutive frames. It 
takes the detection outputs from YOLOv8 as input, and 
first uses a Kalman filter to predict the next position of 
each target in the following frame. Then, a data associa-
tion algorithm, which combines motion information and 
appearance features, is applied to match detections in the 
current frame with previous target trajectories. Once a 
match is made, BoTSORT updates the target’s trajectory 
and assigns it a unique ID, enabling accurate cross-frame 
tracking. This approach ensures that each target maintains 
a consistent identifier throughout the video sequence, 
preventing duplicate counting or target loss. By integrat-
ing YOLOv8 object detection with BoTSORT tracking, 
the system can accurately classify and dynamically track 
droplets encapsulating microspheres.

3. Results and discussion

3.1 Principle of sorting and counting system

Figure 3 illustrates the label-free cell sorting and count-
ing system that integrates object detection with tracking. 
In this system, the deep learning-based YOLOv8 object 
detection algorithm and the BoTSORT tracking algorithm 
are used to perform real-time detection, classification, and 
counting of polystyrene microspheres encapsulated in wa-
ter-in-oil droplets captured by bright-field imaging. As the 
droplets containing polystyrene microspheres pass through 
the chip’s sorting region, a CCD camera continuously 
acquires images at 60 fps, which are then transmitted to a 
computer. There, the trained YOLOv8 network processes 
each frame to determine the droplet type and position. The 
detection results from multiple frames are subsequently 
correlated using the BoTSORT tracking algorithm, which 
assigns a unique ID to each droplet for dynamic tracking.

When these droplets enter the region of interest (ROI) 
within the sorting area, they are classified and counted. If 
a droplet meets the predefined target criteria, its prediction 
result is sent via a USB (COM5) connection to an FPGA. 
The FPGA generates a trigger signal that produces a digital 
signal output, which is forwarded to an external DA mod-
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ule. This module converts the signal into a continuous 50 
ms AC pulse (10 kHz sine wave). The pulse is then ampli-
fied 200-fold by a high-voltage amplifier (ATA2161) and 

delivered via wires to the saturated saline electrodes on the 
chip, thereby generating a DEP force that directs the target 
droplets into the collection channel, as shown in Figure 4.

Figure 3. Sorting system.

Figure 4. Sorting process.
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3.2 Real-time classification and counting of 
droplets

The system employs the YOLOv8 object detection 
algorithm and BoTSORT object tracking algorithm to per-
form real-time detection and counting of droplets within 
the sorting region. First, using the established platform, 
a mixture of polystyrene microsphere solution and HFE-
7500 droplet generation oil containing 2% surfactant is 
introduced into the microfluidic chip. The chip is then 
placed on the stage of an inverted microscope, aligning 
its sorting region with the microscope’s field of view. The 

inverted CCD camera operates at a total magnification 
of 10×, with an image resolution of 1280×800 pixels 
and a frame rate of 60 fps. The camera is connected to a 
computer via a USB cable to capture images and videos 
of droplets containing polystyrene microspheres in the 
sorting region. Once stable droplet generation is achieved, 
the detection model is activated for real-time droplet 
monitoring. As illustrated in Figure 5a, the system demon-
strates precise identification and classification of droplets 
containing varying numbers of polystyrene microspheres 
entering the sorting region.

Figure 5. Real-time classification and counting of microdroplet categories; (a) Pre-ROI phase - microdroplets approach-
ing detection zone; (b) Post-ROI phase - categorical enumeration triggered upon ROI (Region of Interest) entry with 

targeted sorting.

A custom program is used to define the ROI (Region of 
Interest), and droplets passing through this area are classi-
fied, confirmed, and counted. As shown in Figure 5b, after 
droplets enter the defined ROI, they are classified and 
counted in real-time based on the model’s predicted clas-
sification results and IDs, with the counts displayed above 
the image field. The variable total_droplet represents the 
total number of droplets counted, droplet_0cell represents 
the count of empty droplets, droplet_1cell represents the 
count of droplets containing exactly one polystyrene mi-
crosphere, droplet_2cell represents the count of droplets 
containing exactly two polystyrene microspheres, and 
droplet_3cell represents the count of droplets containing 
three or more polystyrene microspheres. Experimen-
tal testing has demonstrated the feasibility of using the 
YOLOV8 object detection algorithm and the BoTSORT 
object tracking algorithm for real-time droplet classifica-
tion prediction and counting.

3.3 Sorting and counting of individual polystyrene 
microsphere droplets

We conducted sorting and counting tests on droplets 
encapsulating single polystyrene microspheres. First, a 
prepared polystyrene microsphere solution and HFE-7500 
droplet generation oil containing 2% surfactant were intro-
duced into the microfluidic chip. Once stable generation 
of droplets encapsulating polystyrene microspheres was 
achieved, the YOLOv8 object detection and BoTSORT 
tracking algorithms were employed to perform real-time 
classification and counting of droplets containing single 
polystyrene microspheres on the chip. The real-time sort-
ing and counting process is illustrated in Figure 6.

As shown in Figure 6a, when droplets enter the sorting 
region, the YOLOv8 and BoTSORT algorithms perform 
real-time classification predictions. Subsequently, as the 
droplets flow into the predefined region of interest (ROI), 
they are counted and categorized based on their predicted 
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classes. If a droplet is identified as containing a single 
polystyrene microsphere (the target class), the electrodes 
are activated to direct the target droplet into the collection 

channel (Figure 6b). The sorted single-microsphere drop-
lets are then transported through the collection channel to 
the outlet for retrieval (Figure 6c).

Figure 6. Sorting and counting of single polystyrene (PS) microsphere-containing droplets; (a) Real-time classification 
prediction of droplets entering the sorting region; (b) Target droplets flow into the region of interest (ROI), where count-

ing is performed and electrodes are activated; (c) Sorted droplets are collected.

4. Conclusion
This study proposes, for the first time, a droplet mi-

crofluidic sorting and counting system integrating object 
detection and tracking algorithms. A detection model was 
initially developed using a dataset of polystyrene micro-
spheres. Experimental validation was then conducted to 
evaluate the real-time classification and counting capabil-
ities of the YOLOv8 detection algorithm and BoTSORT 
tracking algorithm for droplets. The results demonstrate 
that the constructed model can accurately classify and 
count distinct droplet types in real time by leveraging fea-
ture differences between droplets. Finally, real-time sort-
ing and counting of droplets containing single polystyrene 
microspheres were performed, confirming the system’s 
reliability. Compared to traditional labeling methods, this 
approach achieves high detection accuracy while elim-
inating cellular labeling interference, offering greater 
flexibility and application potential. This work provides 
critical technical support and a novel research platform for 
cutting-edge fields such as precision medicine, single-cell 
sequencing, and cell therapy.
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