开放期刊系统

不同结构螺带式搅拌釜内非牛顿流体混合特性数值分析

晓月 熊(东华大学,中国)
凤国 田(东华大学,中国)

摘要

本文通过CFD模拟,系统探究了不同螺带搅拌釜内非牛顿流体的流体动力学特性,并结合示踪剂法量化评价了釜内物料的动态混合特征。所考察结构主要包括即平面封底、椭圆封底以及螺杆复合式螺带搅拌釜。研究详细辨析了不同条件下釜内的速度矢量场、示踪剂浓度演变过程,以及不同位置的动态混合时变过程。结果表明,螺杆复合式螺带搅拌结构将混合时间由椭圆封底螺带结构下的70s混合时间缩短至48s、将能量消耗由平底螺带搅拌结构下的396W降至346W,表现出良好的综合性能。

关键词

螺带式搅拌釜;流体动力学;混合特性;几何结构;CFD。

全文:

PDF

参考

Skočilas, J., Ayas, M., Skocilasova, B., & Jirout, T., 2019. Effect of rotation direction of helical-ribbon agitator on circulation of high viscous batch. PROCEEDINGS OF THE 2ND INTERNATIONAL CONFERENCE ON BIOSCIENCE, BIOTECHNOLOGY, AND BIOMETRICS 2019.

Rahimi, M., Kakekhani, A., & Alsairafi, A.A., 2010. Experimental and computational fluid dynamic (CFD) studies on mixing characteristics of a modified helical ribbon impeller. Korean Journal of Chemical Engineering, 27, 1150-1158.

Tanguy, P.A., Lacroix, R., Bertrand, F., Choplin, L., & Fuente, E.B., 1992. Finite element analysis of viscous mixing with a helical ribbon-screw impeller. Aiche Journal, 38, 939-944.

Carreau, P.J., Chhabra, R., & Cheng, J.J., 1993. Effect of rheological properties on power consumption with helical ribbon agitators. AiChe Journal, 39, 1421-1430.

Mihailova, O., Mothersdale, T., Rodgers, T.L., Ren, Z., Watson, S., Lister, V.Y., & Kowalski, A., 2018. Optimisation of mixing performance of helical ribbon mixers for high throughput applications using computational fluid dynamics. Chemical Engineering Research & Design, 132, 942-953.

Ihejirika, I., & Ein‐Mozaffari, F., 2007. Using CFD and Ultrasonic velocimetry to Study the Mixing of Pseudoplastic Fluids with a Helical Ribbon Impeller. Chemical Engineering & Technology, 30, 606-614.

Ameur, H., Bouzit, M., & Ghenaim, A., 2013. Hydrodynamics in a vessel stirred by simple and double helical ribbon impellers. Central European Journal of Engineering, 3, 87-98.

Delaplace, G., Guerin, R., Leuliet, J.C., & Chhabra, R., 2006. An analytical model for the prediction of power consumption for shear-thinning fluids with helical ribbon and helical screw ribbon impellers. Chemical Engineering Science, 61, 3250-3259.

Wang, S., Tan, M., Wu, H., Li, Y., Xie, G., & Zhang, L., 2022. A Digital Rock Physics-Based Multiscale Multicomponent Model Construction of Hot-Dry Rocks and Microscopic Analysis of Acoustic Properties under High-Temperature Conditions. SPE Journal.

Robinson, M., & Cleary, P.W., 2012. Flow and mixing performance in helical ribbon mixers. Chemical Engineering Science, 84, 382-398.

Fuente, E.B., Choplin, L., & Tanguy, P.A., 1997. Mixing With Helical Ribbon Impellers. Chemical Engineering Research & Design, 75, 45-52.

Halidan, M., Chandratilleke, G.R., Dong, K., & Yu, A., 2018. Mixing performance of ribbon mixers: Effects of operational parameters. Powder Technology, 325, 92-106.

Ali, S., & Baccar, M., 2017. Numerical study of hydrodynamic and thermal behaviors in a scraped surface heat exchanger with helical ribbons. Applied Thermal Engineering, 111, 1069-1082.

Márquez-Baños, V.E., Concha-Gómez, A.D., Valencia-López, J.J., López-Yáñez, A., & Ramírez-Muñoz, J., 2019. Shear rate and direct numerical calculation of the Metzner-Otto constant for a pitched blade turbine. Journal of Food Engineering.

Auger, F., Delaplace, G., Bouvier, L., Redl, A., André, C., & Morel, M.H., 2013. Hydrodynamics of a planetary mixer used for dough process: Influence of impeller speeds ratio on the power dissipated for Newtonian fluids. Journal of Food Engineering, 118, 350-357.



DOI: http://dx.doi.org/10.12345/hgyjxjz.v3i2.23795

Refbacks

  • 当前没有refback。
版权所有(c)2025 晓月 熊, 凤国 田 Creative Commons License
此作品已接受知识共享署名-非商业性使用 4.0国际许可协议的许可。
  • :+65-62233778 QQ:2249355960 :contact@s-p.sg