Design of Droplet Microfluidic Sorting and Counting System based on Object Detection and Tracking Algorithm
Abstract
Droplet microfluidics, which encapsulates individual cells within separate microreactors, has become an essential tool for single-cell phenotypic and genotypic analysis. However, the efficiency of single-cell encapsulation is limited by the Poisson distribution governing the encapsulation process, resulting in most droplets being either empty or containing multiple cells. Traditional single-cell sorting methods typically rely on fluorescence labeling for identification, but this approach not only increases experimental costs and complexity but can also impact cell viability. Additionally, current label-free sorting methods still encounter difficulties in accurately detecting multicellular droplets and small cellular aggregates. To address these challenges, this paper proposes an intelligent sorting system that combines YOLOv8 object detection and BoTSORT tracking algorithms. This system enables real-time analysis of droplet images, facilitating precise identification, counting, and automated sorting of target droplets. To validate the system's performance, polystyrene microspheres were used to simulate real cells in sorting tests. The results demonstrated that, under label-free conditions, the system significantly outperformed traditional fluorescence labeling methods in both classification accuracy and sorting efficiency. This system provides an effective, label-free solution for cell sorting, with potential applications in precision medicine, single-cell sequencing, and drug screening.
Keywords
Full Text:
PDFReferences
Aharon, N., Orfaig, R., & Bobrovsky, B.-Z. (2022). Bot-sort: Robust associations multi-pedestrian tracking. arXiv preprint arXiv:2206.14651. https://doi.org/10.48550/arXiv.2206.14651
Gardner, K., Uddin, M. M., Tran, L., Pham, T., Vanapalli, S., & Li, W. (2022). Deep learning detector for high precision monitoring of cell encapsulation statistics in microfluidic droplets. Lab on a Chip, 22(21), 4067-4080. https://doi.org/10.1039/d2lc00462c
Hochstetter, A., Vernekar, R., Austin, R. H., Becker, H., Beech, J. P., Fedosov, D. A., Gompper, G., Kim, S.-C., Smith, J. T., Stolovitzky, G., Tegenfeldt, J. O., Wunsch, B. H., Zeming, K. K., Krüger, T., & Inglis, D. W. (2020). Deterministic Lateral Displacement: Challenges and Perspectives. ACS Nano, 14(9), 10784-10795. https://doi.org/10.1021/acsnano.0c05186
Howell, L., Anagnostidis, V., & Gielen, F. (2021). Multi‐Object Detector YOLOv4‐Tiny Enables High‐Throughput Combinatorial and Spatially‐Resolved Sorting of Cells in Microdroplets. Advanced Materials Technologies, 7(5). https://doi.org/10.1002/admt.202101053
https://github.com/ultralytics/ultralytics
Kemna, E. W. M., Schoeman, R. M., Wolbers, F., Vermes, I., Weitz, D. A., & van den Berg, A. (2012). High-yield cell ordering and deterministic cell-in-droplet encapsulation using Dean flow in a curved microchannel. Lab on a Chip, 12(16). https://doi.org/10.1039/c2lc00013j
Link, A., McGrath, J. S., Zaimagaoglu, M., & Franke, T. (2022). Active single cell encapsulation using SAW overcoming the limitations of Poisson distribution. Lab on a Chip, 22(1), 193-200. https://doi.org/10.1039/d1lc00880c
Tang, R., Xia, L., Gutierrez, B., Gagne, I., Munoz, A., Eribez, K., Jagnandan, N., Chen, X., Zhang, Z., Waller, L., Alaynick, W., Cho, S. H., An, C., & Lo, Y.-H. (2023). Low-latency label-free image-activated cell sorting using fast deep learning and AI inferencing. Biosensors and Bioelectronics, 220. https://doi.org/10.1016/j.bios.2022.114865
Xi, H.-D., Zheng, H., Guo, W., Gañán-Calvo, A. M., Ai, Y., Tsao, C.-W., Zhou, J., Li, W., Huang, Y., Nguyen, N.-T., & Tan, S. H. (2017). Active droplet sorting in microfluidics: a review. Lab on a Chip, 17(5), 751-771. https://doi.org/10.1039/c6lc01435f
Zhong, J., Liang, M., Tang, Q., & Ai, Y. (2023). Selectable encapsulated cell quantity in droplets via label-free electrical screening and impedance-activated sorting. Materials Today Bio, 19. https://doi.org/10.1016/j.mtbio.2023.100594
DOI: http://dx.doi.org/10.26549/met.v8i1.23688
Refbacks
- There are currently no refbacks.

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.