开放期刊系统

SphKs/S1P 在哮喘发病机制研究进展

波 王(内蒙古医科大学研究生院,中国;)
少飞 于(内蒙古自治区人民医院儿科,中国;)

摘要

哮喘是一种以慢性气道炎症和气道高反应性为特征的异质性疾病,主要特征包括多种炎症细胞和细胞组分共同参与的气道慢性炎症,引起气道对各种刺激因素呈现高反应性,以及随病程延长而导致的气道重塑。鞘氨醇激酶(Sphingosine kinases,SphKs)是1-磷酸鞘氨醇(sphingosine-1-phosphate,S1P)生成的关键酶。S1P特异性结合S1P受体(sphingosine-1-phosphate receptos,S1PRs),通过多条途径参与炎症及组织损伤的调控及进展,与疾病的严重程度及预后密切相关。近年来关于SphKs/S1P信号通路在哮喘发生发展的研究逐渐增多,本文就其结构、功能及在哮喘发病可能机制进行综述。

关键词

鞘氨醇激酶;1-磷酸鞘氨醇;哮喘;气道炎症;气道高反应性;气道重塑

全文:

PDF

参考

Li J, Huang Y, Zhang Y, et al. S1P/S1PR signaling pathway advancements in autoimmune diseases[J]. Biomolecules and Biomedicine, 2023, 23(6): 922.

Gupta P, Taiyab A, Hussain A, et al. Targeting the sphingosine kinase/sphingosine-1-phosphate signaling axis in drug discovery for cancer therapy[J]. Cancers, 2021, 13(8): 1898.

Gomez-Larrauri A, Presa N, Dominguez-Herrera A, et al. Role of bioactive sphingolipids in physiology and pathology[J]. Essays in biochemistry, 2020, 64(3): 579-589.

Díaz-Perales A, Escribese M M, Garrido-Arandia M, et al. The role of sphingolipids in allergic disorders[J]. Frontiers in allergy, 2021, 2: 675557.

Boboltz A, Kumar S, Duncan G A. Inhaled drug delivery for the targeted treatment of asthma[J]. Advanced Drug Delivery Reviews, 2023, 198: 114858.

Jo H, Shim K, Jeoung D. The Crosstalk between FcεRI and Sphingosine Signaling in Allergic Inflammation[J]. International Journal of Molecular Sciences, 2022, 23(22): 13892.

Liu H, Li L, Chen Z, et al. S1PR2 inhibition attenuates allergic asthma possibly by regulating autophagy[J]. Frontiers in pharmacology, 2021, 11: 598007.

Jeon W J, Chung K W, Lee J H, et al. Suppressive Effect of CYM50358 S1P4 antagonist on mast cell degranulation and allergic asthma in mice[J]. Biomolecules & therapeutics, 2021, 29(5): 492.

Bugajev V, Halova I, Demkova L, et al. ORMDL2 deficiency potentiates the ORMDL3-dependent changes in mast cell signaling[J]. Frontiers in Immunology, 2021, 11: 591975.

Nakagome K, Nagata M. The Possible Roles of IL-4/IL-13 in the Development of Eosinophil-Predominant Severe Asthma[J]. Biomolecules, 2024, 14(5): 546.

Hammad H, Lambrecht B N. The basic immunology of asthma[J]. Cell, 2021, 184(6): 1469-1485.

Huppé C A, Blais-Lecours P, Bernatchez E, et al. S1P1 contributes to endotoxin-enhanced B-cell functions involved in hypersensitivity pneumonitis[J]. American Journal of Respiratory Cell and Molecular Biology, 2020, 63(2): 209-218.

Soh W T, Zhang J, Hollenberg M D, et al. Protease allergens as initiators–regulators of allergic inflammation[J]. Allergy, 2023, 78(5): 1148-1168.

Soh W T, Zhang J, Hollenberg M D, et al. Protease allergens as initiators–regulators of allergic inflammation[J]. Allergy, 2023, 78(5): 1148-1168.

Rupani H, Busse W W, Howarth P H, et al. Therapeutic relevance of eosinophilic inflammation and airway viral interactions in severe asthma[J]. Allergy, 2024, 79(10): 2589-2604.

Yoshida K, Morishima Y, Ishii Y, et al. Abnormal saturated fatty acids and sphingolipids metabolism in asthma[J]. Respiratory Investigation, 2024, 62(4): 526-530.

Feng X, Li L, Feng J, et al. Vagal-α7nAChR signaling attenuates allergic asthma responses and facilitates asthma tolerance by regulating inflammatory group 2 innate lymphoid cells[J]. Immunology and Cell Biology, 2021, 99(2): 206-222.

Kawa Y, Nagano T, Yoshizaki A, et al. Role of S1P/S1PR3 axis in release of CCL20 from human bronchial epithelial cells[J]. PLoS One, 2018, 13(9): e0203211.

Liu Y, Cheng K, Sun M, et al. UBD participates in neutrophilic asthma by promoting the activation of IL-17 signaling[J]. International Journal of Biological Macromolecules, 2024, 264: 130581.

James B N, Weigel C, Green C D, et al. Neutrophilia in severe asthma is reduced in Ormdl3 overexpressing mice[J]. The FASEB Journal, 2023, 37(3).

Ijpma G, Kachmar L, Panariti A, et al. Intrapulmonary airway smooth muscle is hyperreactive with a distinct proteome in asthma[J]. European Respiratory Journal, 2020, 56(1).

Maguire T J A, Yung S, Ortiz-Zapater E, et al. Sphingosine-1-phosphate induces airway smooth muscle hyperresponsiveness and proliferation[J]. Journal of Allergy and Clinical Immunology, 2023, 152(5): 1131-1140. e6.

Fuerst E, Foster H R, Ward J P T, et al. Sphingosine-1-phosphate induces pro-remodelling response in airway smooth muscle cells[J]. Allergy, 2014, 69(11): 1531-1539.

Liu H, Li L, Chen Z, et al. S1PR2 inhibition attenuates allergic asthma possibly by regulating autophagy[J]. Frontiers in pharmacology, 2021, 11: 598007.

Schulze P C, De Keulenaer G W, Yoshioka J, et al. Vitamin D3–upregulated protein-1 (VDUP-1) regulates redox-dependent vascular smooth muscle cell proliferation through interaction with thioredoxin[J]. Circulation research, 2002, 91(8): 689-695.

Varricchi G, Brightling C E, Grainge C, et al. Airway remodelling in asthma and the epithelium: on the edge of a new era[J]. European Respiratory Journal, 2024, 63(4).

Riemma M A, Cerqua I, Romano B, et al. Sphingosine-1-phosphate/TGF-β axis drives epithelial mesenchymal transition in asthma-like disease[J]. British journal of pharmacology, 2022, 179(8): 1753-1768.

Dilasser F, Rose L, Hassoun D, et al. Essential role of smooth muscle Rac1 in severe asthma-associated airway remodelling[J]. Thorax, 2021, 76(4): 326-334.

Pan Y, Liu L, Zhang Q, et al. Activation of AMPK suppresses S1P-induced airway smooth muscle cells proliferation and its potential mechanisms[J]. Molecular Immunology, 2020, 128: 106-115.

Liu H, Li L, Chen Z, et al. S1PR2 inhibition attenuates allergic asthma possibly by regulating autophagy[J]. Frontiers in pharmacology, 2021, 11: 598007.

Kardas G, Daszyńska-Kardas A, Marynowski M, et al. Role of platelet-derived growth factor (PDGF) in asthma as an immunoregulatory factor mediating airway remodeling and possible pharmacological target[J]. Frontiers in pharmacology, 2020, 11: 47.



DOI: http://dx.doi.org/10.12345/yzlcyxzz.v8i1.23407

Refbacks

  • 当前没有refback。
版权所有(c)2025 波 王, 少飞 于 Creative Commons License
此作品已接受知识共享署名-非商业性使用 4.0国际许可协议的许可。
  • :+65-62233778 QQ:2249355960 :contact@s-p.sg