CHIT1 对中枢神经系统疾病作用的研究进展
摘要
关键词
全文:
PDF参考
Steinacker P, Verde F, Fang L, et al. Chitotriosidase (CHIT1) is increased in microglia and macrophages in spinal cord of amyotrophic lateral sclerosis and cerebrospinal fluid levels correlate with disease severity and progression[J]. Journal of Neurology, Neurosurgery, and Psychiatry, 2018, 89(3): 239-247.
Thompson, A. G., Gray, E., et al. Cerebrospinal fluid macrophage biomarkers in amyotrophic lateral sclerosis[J]. Annals of Neurology, 2018, 83(2): 258-268.
Gille B, De Schaepdryver M, Dedeene L, et al. Inflammatory markers in cerebrospinal fluid: independent prognostic biomarkers in amyotrophic lateral sclerosis?[J]. Journal of Neurology, Neurosurgery, and Psychiatry, 2019, 90(12): 1338-1346.
Wang X, Yu W, Fu X, et al. Chitotriosidase enhances TGFβ-Smad signaling and uptake of β-amyloid in N9 microglia[J]. Neuroscience Letters, 2018, 687: 99-103.
Bowser, R., An, J., Mehta, L., et al. Effect of sodium phenylbutyrate and taurursodiol on plasma concentrations of neuroinflammatory biomarkers in amyotrophic lateral sclerosis: results from the CENTAUR trial[J]. Journal of Neurology, Neurosurgery, and Psychiatry, 2024, 95(7): 605-608.
Xu A, Luo Y, Tang Y, et al. Chitinases as a potential diagnostic and prognostic biomarker for amyotrophic lateral sclerosis: a systematic review and meta-analysis[J]. Neurological Sciences: Official Journal of the Italian Neurological Society and of the Italian Society of Clinical Neurophysiology, 2024, 45(6): 2489-2503.
Thompson A G, Gray E, Bampton A, et al. CSF chitinase proteins in amyotrophic lateral sclerosis.[J]. Journal of Neurology, Neurosurgery, and Psychiatry, 2019, 90(11): 1215-1220.
Gaur, N., Huss, E., Prell, T., et al. Monocyte-Derived Macrophages Contribute to Chitinase Dysregulation in Amyotrophic Lateral Sclerosis: A Pilot Study.[J]. Frontiers in neurology, 2021, 12: 629332.
Osaki T, Uzel S G M, Kamm R D. Microphysiological 3D model of amyotrophic lateral sclerosis (ALS) from human iPS-derived muscle cells and optogenetic motor neurons[J]. Science Advances, 2018, 4(10): eaat5847.
Mead R J, Shan N, Reiser H J, et al. Amyotrophic lateral sclerosis: a neurodegenerative disorder poised for successful therapeutic translation[J]. Nature Reviews. Drug Discovery, 2023, 22(3): 185-212.
Beliën J, Swinnen S, D’hondt R, et al. CHIT1 at diagnosis predicts faster disability progression and reflects early microglial activation in multiple sclerosis[J]. Nature Communications, 2024, 15(1): 5013.
Oldoni E, Smets I, Mallants K, et al. CHIT1 at Diagnosis Reflects Long-Term Multiple Sclerosis Disease Activity.[J]. Annals of neurology, 2020, 87(4): 633-645.
Hendrickx D A E, Van Scheppingen J, Van Der Poel M, 等. Gene Expression Profiling of Multiple Sclerosis Pathology Identifies Early Patterns of Demyelination Surrounding Chronic Active Lesions[J]. Frontiers in Immunology, 2017, 8: 1810.
Starossom S C, Campo Garcia J, Woelfle T, et al. Chi3l3 induces oligodendrogenesis in an experimental model of autoimmune neuroinflammation[J]. Nature Communications, 2019, 10(1): 217.
Novakova L, Axelsson M, Khademi M, et al. Cerebrospinal fluid biomarkers as a measure of disease activity and treatment efficacy in relapsing-remitting multiple sclerosis[J]. Journal of Neurochemistry, 2017, 141(2): 296-304.
Sanfilippo C, Malaguarnera L, Di Rosa M. Chitinase expression in Alzheimer’s disease and non-demented brains regions[J]. Journal of the Neurological Sciences, 2016, 369, 242–249.
Abu-Rumeileh S, Steinacker P, Polischi B, et al. CSF biomarkers of neuroinflammation in distinct forms and subtypes of neurodegenerative dementia.[J]. Alzheimer’s Research & Therapy, 2019, 12(1): 2.
Whelan C D, Mattsson N, Nagle M W, et al. Multiplex proteomics identifies novel CSF and plasma biomarkers of early Alzheimer’s disease.[J]. Acta neuropathologica communications, 2019, 7(1): 169.
Zhou M, Haque R U, Dammer E B, et al. Targeted mass spectrometry to quantify brain-derived cerebrospinal fluid biomarkers in Alzheimer’s disease.[J]. Clinical proteomics, 2020, 17: 19.
Yu X, Yu W, Wu L, et al. Chitotriosidase attenuates brain inflammation via HDAC3/NF-κB pathway in D-galactose and aluminum-induced rat model with cognitive impairments.[J]. Neuroscience research, 2021, 172: 73-79.
Yang W, Yu W, Lv Y. Neuroprotective effects of chitinase-1 and calcitonin gene-related peptide on Alzheimer’s disease by promoting lysosomal function[J]. Journal of Alzheimer’s disease: JAD, 2025: 13872877241307257.
X Zeng, Tk L, A S, et al. Multi-analyte proteomic analysis identifies blood-based neuroinflammation, cerebrovascular and synaptic biomarkers in preclinical Alzheimer’s disease[J]. Molecular neurodegeneration, 2024, 19(1).
Wang, Y., & Shen, L. (2023). Correlation between serum CHIT1 and CHI3L1 levels and prognosis in patients with acute cerebral infarction. Anhui Medical Journal, 27(10), 2055–2058.
Kitamoto S, Egashira K, Ichiki T, et al. Chitinase Inhibition Promotes Atherosclerosis in Hyperlipidemic Mice[J]. The American Journal of Pathology, 2013, 183(1): 313-325.
Yap J, McCurdy S, Alcala M, et al. Expression of Chitotriosidase in Macrophages Modulates Atherosclerotic Plaque Formation in Hyperlipidemic Mice.[J]. Frontiers in physiology, 2020, 11: 714.
Güçlü A, Yilmaz M I, Tokmak T T, et al. nts[J]. Hemodialysis International. International Symposium on Home Hemodialysis, 2017, 21(1): 41-46.
Di Rosa M, Malaguarnera L. Chitotriosidase: A New Inflammatory Marker in Diabetic Complications[J]. Pathobiology: Journal of Immunopathology, Molecular and Cellular Biology, 2016, 83(4): 211-219.
Zhang M, Zhang Z, Li H, et al. Blockage of VEGF function by bevacizumab alleviates early-stage cerebrovascular dysfunction and improves cognitive function in a mouse model of Alzheimer’s disease[J]. Translational Neurodegeneration, 2024, 13(1): 1.
DOI: http://dx.doi.org/10.12345/yzlcyxzz.v8i2.24018
Refbacks
- 当前没有refback。

此作品已接受知识共享署名-非商业性使用 4.0国际许可协议的许可。