Open Journal Systems

Exploring Cellular Signaling Pathways in Respiratory Physiology: Implications for Disease Diagnosis and Therapy

Amire Eroles(Fundación Investigación del Hospital Clínico Universitario de Valencia/INCLIVA, Av. Blasco Ibáñez 17, 46010 Valencia, Spain)
Ana Silva(Servicio de Hematología y Oncología Médica, Hospital Clínico Universitario de Valencia, Av. Blasco Ibáñez 17, 46010 Valencia, Spain)
Mateus Santos(Fundación Investigación del Hospital Clínico Universitario de Valencia/INCLIVA, Av. Blasco Ibáñez 17, 46010 Valencia, Spain)
Juliana Oliveira(Servicio de Hematología y Oncología Médica, Hospital Clínico Universitario de Valencia, Av. Blasco Ibáñez 17, 46010 Valencia, Spain)
Rafael Costa(Servicio de Hematología y Oncología Médica, Hospital Clínico Universitario de Valencia, Av. Blasco Ibáñez 17, 46010 Valencia, Spain)

Abstract

Cellular signaling pathways play a crucial role in regulating respiratory physiology and are integral to the pathogenesis of respiratory diseases. This review explores the intricate mechanisms of cellular signaling in respiratory physiology and discusses their implications for disease diagnosis and therapy. Firstly, the review provides an overview of key cellular signaling pathways involved in respiratory physiology, including those regulating airway smooth muscle contraction, mucin secretion, and immune cell activation. The role of signaling molecules such as G-protein coupled receptors, kinases, and transcription factors in mediating these pathways is discussed in detail.  Next, the review examines how dysregulation of cellular signaling pathways contributes to the pathogenesis of common respiratory diseases such as asthma, chronic obstructive pulmonary disease (COPD), and pulmonary fibrosis. Insights into the molecular mechanisms underlying disease development and progression are highlighted, including aberrant cytokine signaling, oxidative stress, and epithelial-mesenchymal transition. Furthermore, the review explores the potential of targeting cellular signaling pathways for disease diagnosis and therapy. It discusses emerging diagnostic biomarkers based on signaling pathway dysregulation and evaluates the efficacy of pharmacological interventions targeting key signaling molecules in preclinical and clinical studies.  Overall, this review provides a comprehensive understanding of cellular signaling pathways in respiratory physiology and their implications for disease diagnosis and therapy. It underscores the importance of further research in this area to develop novel diagnostic tools and therapeutic strategies for respiratory diseases.

Full Text:

PDF

References

Barnes PJ. Cellular and molecular mechanisms of asthma and COPD. Clin Sci (Lond). 2017;131(13):1541-1558. doi:10.1042/CS20160487

Lambrecht BN, Hammad H. The immunology of asthma. Nat Immunol. 2015;16(1):45-56. doi:10.1038/ni.3049

Martinez FD. Early-life origins of chronic obstructive pulmonary disease. N Engl J Med. 2016;375(9):871-878. doi:10.1056/NEJMra1603287

Wynn TA. Cellular and molecular mechanisms of fibrosis. J Pathol. 2008;214(2):199-210. doi:10.1002/path.2277

Burgess JK, Mauad T, Tjin G, et al. The extracellular matrix - the under-recognized element in lung disease? J Pathol. 2016;240(4):397-409. doi:10.1002/path.4785

Holgate ST, Polosa R. Treatment strategies for allergy and asthma. Nat Rev Immunol. 2008;8(3):218-230. doi:10.1038/nri2262

Lambrecht BN, Hammad H. Asthma: the importance of dysregulated barrier immunity. Eur J Immunol. 2013;43(12):3125-3137. doi:10.1002/eji.201343727

Panettieri RA Jr, Kotlikoff MI, Gerthoffer WT, et al. Airway smooth muscle in bronchial tone, inflammation, and remodeling: basic knowledge to clinical relevance. Am J Respir Crit Care Med. 2008;177(3):248-252. doi:10.1164/rccm.200703-520SO

Burgess JK, Carlin S, Pack RA, et al. Detection and characterization of O-glycan sialylation in airway mucins using novel mucin-specific monoclonal antibodies. Am J Respir Cell Mol Biol. 2004;31(5):536-542. doi:10.1165/rcmb.2003-0319OC

Fahy JV, Dickey BF. Airway mucus function and dysfunction. N Engl J Med. 2010;363(23):2233-2247. doi:10.1056/NEJMra0910061

Hastie AT, Martinez FJ, Curtis JL, et al. Association of sputum and blood eosinophil concentrations with clinical measures of COPD severity: an analysis of the SPIROMICS cohort. Lancet Respir Med. 2017;5(12):956-967. doi:10.1016/S2213-2600(17)30432-0

Barnes PJ. Inflammatory mechanisms in patients with chronic obstructive pulmonary disease. J Allergy Clin Immunol. 2016;138(1):16-27. doi:10.1016/j.jaci.2016.05.011

Bhavsar P, Ahmad T, Adcock IM. The role of histone deacetylases in asthma and allergic diseases. J Allergy Clin Immunol. 2008;121(3):580-584. doi:10.1016/j.jaci.2008.01.004

Wenzel SE. Asthma phenotypes: the evolution from clinical to molecular approaches. Nat Med. 2012;18(5):716-725. doi:10.1038/nm.2678

Hackett TL, Warner SM, Stefanowicz D, et al. Induction of epithelial-mesenchymal transition in primary airway epithelial cells from patients with asthma by transforming growth factor-β1. Am J Respir Crit Care Med. 2009;180(2):122-133. doi:10.1164/rccm.200811-1697OC

Bucchieri F, Puddicombe SM, Lordan JL, et al. Asthmatic bronchial epithelium is more susceptible to oxidant-induced apoptosis. Am J Respir Cell Mol Biol. 2002;27(2):179-185. doi:10.1165/ajrcmb.27.2.4708

Feltis BN, Wignarajah D, Zheng L, et al. Increased vascular endothelial growth factor and receptors: relationship to angiogenesis in asthma. Am J Respir Crit Care Med. 2006;173(11):1201-1207. doi:10.1164/rccm.200509-1467OC

Siddiqui S, Sutcliffe A, Shikotra A, et al. Vascular remodeling is a feature of asthma and nonasthmatic eosinophilic bronchitis. J Allergy Clin Immunol. 2007;120(4):813-819. doi:10.1016/j.jaci.2007.05.050

Chung KF, Adcock IM. Multifaceted mechanisms in COPD: inflammation, immunity, and tissue repair and destruction. Eur Respir J. 2008;31(6):1334-1356. doi:10.1183/09031936.00018908

Polosa R, Thomson NC. Smoking and asthma: dangerous liaisons. Eur Respir J. 2013;41(3):716-726. doi:10.1183/09031936.00008612

Khor YH, Ng WY, Toh LK. Precision medicine in airway diseases: moving to clinical practice. Curr Opin Pulm Med. 2019;25(1):34-40. doi:10.1097/MCP.0000000000000538

Gibson PG, McDonald VM. Asthma-COPD overlap 2015: now we are six. Thorax. 2015;70(7):683-691. doi:10.1136/thoraxjnl-2015-206730

Chorley BN, Campbell MR, Wang X, et al. Identification of novel NRF2-regulated genes by ChIP-Seq: influence on retinoid X receptor alpha. Nucleic Acids Res. 2012;40(15):7416-7429. doi:10.1093/nar/gks409

Nguyen LP, Lin R, Parra S, et al. β2-Adrenoceptor signaling is required for the development of an asthma phenotype in a murine model. Proc Natl Acad Sci U S A. 2009;106(7):2435-2440. doi:10.1073/pnas.0806827106

Pavord ID, Beasley R, Agusti A, et al. After asthma: redefining airways diseases. Lancet. 2018;391(10118):350-400. doi:10.1016/S0140-6736(18)30442-7

Cosio BG, Soriano JB, López-Campos JL, et al. Defining the asthma-COPD overlap syndrome in a COPD cohort. Chest. 2016;149(1):45-52. doi:10.1378/chest.15-0530

Benayoun L, Druilhe A, Dombret MC, et al. Airway structural alterations selectively associated with severe asthma. Am J Respir Crit Care Med. 2003;167(10):1360-1368. doi:10.1164/rccm.200301-122OC

Chen G, Sun L, Kato T, et al. IL-1β dominates the promucin secretory cytokine profile in cystic fibrosis. J Clin Invest. 2019;129(10):4433-4450. doi:10.1172/JCI127426

Fahy JV. Type 2 inflammation in asthma—present in most, absent in many. Nat Rev Immunol. 2015;15(1):57-65. doi:10.1038/nri3786

Neveu WA, Allard JL, Raymond DM, et al. Elevation of IL-6 in the allergic asthmatic airway is independent of inflammation but associates with loss of central airway function. Respir Res. 2010;11:28. doi:10.1186/1465-9921-11-28



DOI: http://dx.doi.org/10.26549/ahpr.v5i2.15931

Refbacks

  • There are currently no refbacks.
  • :+65-62233778 QQ:2249355960 :contact@s-p.sg