风电场机载风速仪状态评估研究
摘要
关键词
全文:
PDF参考
Council G W E. GWEC global wind report 2024[R]. Global wind energy council, 2024.
Han J, Wang X, Yang X, et al. Yaw system restart strategy optimization of wind turbines in mountain wind farms based on operational data mining and multi-objective optimization[J]. Engineering Applications of Artificial Intelligence, 2023, 126: 107036.
张世栋,左新斌,孙勇,等.一种配电主设备分布式状态传感器可靠性评估方法[J].华北电力大学学报(自然科学版),2021,48(01):33-41.
Sharifani K, Amini M. Machine learning and deep learning: A review of methods and applications[J]. World Information Technology and Engineering Journal, 2023, 10(07): 3897-3904.
龙寰,杨婷,徐劭辉,等.基于数据驱动的风电机组状态监测与故障诊断技术综述[J].电力系统自动化,2023,47(23):55-69.
陶彦亭,王霄,吴青,等.基于CNN-BiGRU的海上风电机组异常状态监测[J/OL].机床与液压,1-8[2025-03-21].
Yu Y, Si X, Hu C, et al. A review of recurrent neural networks: LSTM cells and network architectures[J]. Neural computation, 2019, 31(7): 1235-1270.
Mim T R, Amatullah M, Afreen S, et al. GRU-INC: An inception-attention based approach using GRU for human activity recognition[J]. Expert Systems with Applications, 2023, 216: 119419.
Wang H, Li Y F. Wavelet-powered hierarchical frequency filtering framework for autonomous vehicle sensors fault diagnosis and correction under open environments[J]. Engineering Applications of Artificial Intelligence, 2024, 136: 108848.
Lin W, Miao X, Chen J, et al. Fault detection and isolation for multi-type sensors in nuclear power plants via a knowledge-guided spatial–temporal model[J]. Knowledge-Based Systems, 2024, 300: 112182.
DOI: http://dx.doi.org/10.12345/dlynyqy.v3i4.26475
Refbacks
- 当前没有refback。

此作品已接受知识共享署名-非商业性使用 4.0国际许可协议的许可。