探究中国河北省 VIIRS 灯光遥感数据与 PM2.5 浓度的空间关系
摘要
感数据强度与PM2.5浓度空间关系,得出PM2.5浓度较高的地区与人口主要分布地区总体一致,说明该区域的环境污染在很大程度上与该区域人类经济活动有很大的关联性。
关键词
全文:
PDF参考
Naveen Chandra,Jayanta Kumar Ghosh,Ashu Sharma. A cognitive framework for road detection from high-resolution satellite images[J]. Geocarto International,2019,34(8):1035-1039.
李德仁,余涵若,李熙.基于夜光遥感影像的“一带一路”沿线国家城市发展时空格局分析[J].武汉大学学报(信息科学版),2017,42(6):711-720.
Elvidge C D, Baugh K E, Kihn E A, et al. Relation between satellite observed visible-near infrared emissions, population, economic activity and electric power consumption[J]. International Journal of Remote Sensing, 1997,18(6):1373-1379.
Xu, Xiaoguang, Aegerter, et al. Potential application of VIIRS Day/ Night Band for monitoring nighttime surface PM2.5 air quality from space[J].Atmospheric environment, 2016(124):55-63.
Levin N, Kyba C C M, Zhang Q, et al. Remote sensing of night lights: A review and an outlook for the future[J]. Remote Sensing of Environment, 2020(237):111443.
DOI: http://dx.doi.org/10.12345/smg.v4i2.11389
Refbacks
- 当前没有refback。
此作品已接受知识共享署名-非商业性使用 4.0国际许可协议的许可。