血清Salusin β、Cyr61与冠心病的相关研究进展
摘要
关键词
全文:
PDF参考
《中国心血管健康与疾病报告2020》编写组.《中国心血管健康与疾病报告2020》要点解读[J].中国心血管杂志.2021,26(3):209-218.
国家卫生健康委员会.中国卫生健康统计年鉴2020[M].北京:中国协和医科大学出版社,2020.
Shichiri M, Ishimaru S, Ota T, et al. Salusins:newly identified bioactive peptides with hemodynamic and mitogenic activities[J]. Nat Med,2003(9):1166-1172.
Sezgin AT, Sigirci A, Barutcu I, et al. Vascular endothelial function in patients with slow coronary flow[J]. Coron Artery Dis,2003(14):155-161.
Demir B, Caglar IM, Tureli HO, et al. Coronary slow flow phenomenon associated with high serum levels of soluble CD40 ligand and urotensin II:a multi-marker approach[J]. Clin Lab,2014(60):1909-1920.
Liu J, Ren YG, Zhang LH, et al. Serum Salusinβlevels are associated with the presence and severity of coronary artery disease[J].J Investig Med,2015,63(4):632-635.
Wang T, Dong AH, Cao HY. Serum SalusinβLevels Are Correlated with Slow Coronary Flow[J]. Genet Test Mol Biomarkers,2016,20(7):393-397.
Akyüz A, Aydın F, AlpsoyŞ, et al. Relationship of serum salusin beta levels with coronary slow flow[J]. Anatol J Cardiol,2019,22(4):177-184.
Esfahani M, Saidijam M, Najafi R, et al. The effect of Salusinβon expression of pro-and anti-inflammatory cytokines in human umbilical vein endothelial cells(HUVECs)[J]. ARYA Atheroscler,2018,14(1):1-10.
娄满,高春燕,苏宁等.高血压并发冠状动脉粥样硬化性心脏病患者血清血管紧张素Ⅱ、Salusinβ和endocan水平与冠状动脉病变的相关性[J].中华高血压杂志,2022,30(6):567-570.
Yassien M,Fawzy O, Mahmoud E, et al. Serum Salusinβin relation to atherosclerosis and ventricular dysfunction in patients with type 2 diabetes mellitus[J]. Diabetes Metab Syndr,2020,14(6):2057-2062.
Sun HJ, Liu TY, Zhang F, et al. Salusinβcontributes to vascular remodeling associated with hypertension via promoting vascular smooth muscle cell proliferation and vascular fibrosis[J]. Biochim Biophys Acta,2015,1852(9):1709-1718.
赵振梅,马丽娜,张文霞,等.原发性高血压患者血清Salusinβ水平与颈动脉病变关系[J].心脑血管病防治,2020,20(3):239-241+255.
Sipahi S, Genc AB, Acikgoz SB, et al. Relationship of salusin-alpha and salusin-beta levels with atherosclerosis in patients undergoing haemodialysis[J]. Singapore Med J,2019,60(4):210-215.
Yildirim A, Kucukosmanoglu M. Relationship between Serum Salusin Beta Levels and Coronary Artery Ectasia[J]. Acta Cardiol Sin,2021,37(2):130-137.
Chen Y, Du XY. Functional properties and intracellular signaling of CCN1/Cyr61[J].J Cell Biochem,2007,100(6):1337-1345.
Moussad EE, Brigstock DR. Connective tissue growth factor:what’s in a name[J]Mol Genet Metab,2000,71(2):276-292.
Frey SP, Yorumazel B, Hölscher Doht S, et al. Cyr61 improvesmuscle force recreation in a rabbit trauma modell[J].T echnolHealth Care,2019(10):3233.
Jun JI, Lau LF. CCN1is an opsonin for bacterial clearance and adirect activator of Tol-like receptor signaling[J]. Nat Commun,2020,11(1):1242.
Yang R. Chen Y, Chen D. Biological functions and role of CCN1/Cyr6lin embryogenesis and tumorigenesis in the female reproduetive system(Review)[J]. Mol Med Rep,2018,17(1):3.
李竹,万昌武,于燕妮,等.不同程度冠状动脉粥样硬化病变下心肌组织中melusin的表达研究[J].中国病理生理杂志,2020,36(3):408-414.
Hartman J, Frishman WH. Inflammation and atherosclerosis:a review of the role of interleukin-6 in the development of atherosclerosis and the potential for targeted drug therapy[J]. Cardiol Rev,2014,22(3):147-151.
Ross R. Atherosclerosis-an inflammatory disease[J]. N Engl J Med,1999,340(2):115-126.
Palombo C. Kozakova M.Arterial stiffness, atherosclerosis andcardiovascular risk: Pathophysiologic mechanisms andemerglngclinical indications[J]. Vascul Pharmacol,2016(77):1-7.
Schober JM. Chen N, Grzeszkiewicz TM, et al. Identification of in-tegrin alphà(M)beta(2)as an adhesion receptor on peripheral blood monocytesfor Cyr61 (CCNl) and connective tissue growthfactor(CCN2): immediate early gene products expressed in ath-erosclerotic lesions[J]. Blood,2002,99(12):4457-4465.
Liu C, Cao Y, He X, et al. Association of Cyr61-cysteine-rich protein 61 and short-term mortality in patients with acute heart failure and coronary heart disease[J]. Biomark Med,2019,13(18):1589-1597.
Klingenberg R, Aghlmandi S, Liebetrau C, et al. Cysteine-rich angiogenic inducer 61(Cyr61):a novel soluble biomarker of acute myocardial injury improves risk stratification after acute coronary syndromes[J]. Eur Heart J,2017,38(47):3493-3502.
Li W, Li Y, Zhi W, et al. Diagnostic value of using exosome-derived cysteine-rich protein 61 as biomarkers for acute coronary syndrome[J]. Exp Ther Med,2021,22(6):1437.
Gan YR,Wei L, Wang YZ, et al. Dickkopf-1/cysteine-rich angiogenic inducer 61 axis mediates palmitic acid-induced inflammation and apoptosis of vascular endothelial cells[J]. Mol Med Rep,2021,23(2):122.
Hsu PL, Chen JS, Wang CY, et al. Shear-Induced CCN1 Promotes Atheroprone Endothelial Phenotypes and Atherosclerosis[J]. Circulation,2019,139(25):2877-2891.
An W, Luong LA, Bowden NP, et al. Cezanne is a critical regulator of pathological arterial remodelling by targetingβ-catenin signalling[J]. Cardiovasc Res,2022,118(2):638-653.
Zhao JF, Chen HY, Wei J, et al. CCN family member 1 deregulates cholesterol metabolism and aggravates atherosclerosis[J]. Acta Physiol(Oxf),2019,225(3):e13209.
Kim I, Park CS, Lee HY. Angiotensin II Type 1 Receptor Blocker, Fimasartan, Reduces Vascular Smooth Muscle Cell Senescence by Inhibiting the Cyr61 Signaling Pathway[J]. Kor ean Circ J,2019,49(7):615-626.
DOI: http://dx.doi.org/10.12345/yzlcyxzz.v7i3.16232
Refbacks
- 当前没有refback。
此作品已接受知识共享署名-非商业性使用 4.0国际许可协议的许可。