血清胎球蛋白A、低氧诱导因子1在心血管疾病中的作用
摘要
关键词
全文:
PDF参考
Osawa M, Umetsu K, Sato M, et al. Structure of the gene encoding human alpha 2-HS glycoprotein (AHSG)[J]. Gene, 1997,196(1-2):121-125.
Mori K, Emoto M, Inaba M. Fetuin-A and the cardiovascular system[J]. Adv Clin Chem, 2012(56):175-195.
Tang Y L, Jiang J H, Wang S, et al. TLR4/NF-κB signaling contributes to chronic unpredictable mild stress-induced atherosclerosis in ApoE-/-mice[J]. PLoS One, 2015,10(4):e0123685.
Chattopadhyay D, Das S, Guria S, et al. Fetuin-A regulates adipose tissue macrophage content and activation in insulin resistant mice through MCP-1 and iNOS: involvement of IFNγ-JAK2-STAT1 pathway[J]. Biochem J, 2021,478(22):4027-4043.
Skrzypczyk P, Stelmaszczyk-Emmel A, Szyszka M, et al. Circulating calcification inhibitors are associated with arterial damage in pediatric patients with primary hypertension[J]. Pediatr Nephrol, 2021,36(8):2371-2382.
Guarneri M, Geraci C, Incalcaterra F, et al. Subclinical atherosclerosis and fetuin-A plasma levels in essential hypertensive patients[J]. Hypertens Res, 2013,36(2):129-133.
Altinisik H B, Altinisik U, Uysal S, et al. Are Fetuin-A levels beneficial for estimating timing of sepsis occurrence[J]. Saudi Med J, 2018,39(7):679-684.
Westenfeld R, Schäfer C, Krüger T, et al. Fetuin-A protects against atherosclerotic calcification in CKD[J]. J Am Soc Nephrol, 2009,20(6):1264-1274.
Naito C, Hashimoto M, Watanabe K, et al. Facilitatory effects of fetuin-A on atherosclerosis[J]. Atherosclerosis, 2016,24(6):344-351.
Gerdes S, Osadtschy S, Buhles N, et al. Cardiovascular biomarkers in patients with psoriasis[J]. Exp Dermatol, 2014,23(5):322-325.
XIA Y, CHOI H K, LEE K. Recent advances in hypoxia-inducible factor (HIF)-1 inhibitors[J]. Eur J Med Chem, 2012(49):24-40.
Mokas S, Larivière R, Lamalice L, et al. Hypoxia-inducible factor-1 plays a role in phosphate-induced vascular smooth muscle cell calcification [J]. Kidney Int, 2016,90(3):598-609.
Zhang B, Ma Q, Ma F Z, et al. Astragaloside Ⅳ’s Therapeutic Effect on Myocardial Infarction via Affecting Autophagy and the Mechanism Study[J]. Sichuan Da Xue Xue Bao Yi Xue Ban, 2021,52(2):222-228.
Neri M, Riezzo I, Pascale N, et al. Ischemia/Reperfusion Injury following Acute Myocardial Infarction: A Critical Issue for Clinicians and Forensic Pathologists[J]. Mediators Inflamm, 2017:7018393.
Chen W, Wang J, Wang X, et al. Knockdown of hypoxia-inducible factor 1-alpha (HIF1α) interferes with angiopoietin-like protein 2 (ANGPTL2) to attenuate high glucose-triggered hypoxia/reoxygenation injury in cardiomyocytes[J]. Bioengineered, 2022,13(1):1476-1490.
Kadomatsu T, Endo M, Miyata K, et al. Diverse roles of ANGPTL2 in physiology and pathophysiology[J]. Trends Endocrinol Metab, 2014,25(5):245-254.
Lai X X, Zhang N, Chen L Y, et al. Latifolin protects against myocardial infarction by alleviating myocardial inflammatory via the HIF-1α/NF-κB/IL-6 pathway[J]. Pharm Biol, 2020,58(1):1156-1166.
Prabhakar N R. Oxygen sensing during intermittent hypoxia: cellular and molecular mechanisms[J]. J Appl Physiol (1985), 2001,90(5):1986-1994.
Nanduri J, Peng Y J, Yuan G, et al. Hypoxia-inducible factors and hypertension: lessons from sleep apnea syndrome[J]. J Mol Med (Berl), 2015,93(5):473-480.
Kiyuna L A, Albuquerque R P E, CHEN C H, et al. Targeting mitochondrial dysfunction and oxidative stress in heart failure: Challenges and opportunities[J]. Free Radic Biol Med, 2018,129:155-168.
Okonko D O, Shah A M. Heart failure: mitochondrial dysfunction and oxidative stress in CHF[J]. Nat Rev Cardiol, 2015,12(1):6-8.
Hilfiker-Kleiner D, Landmesser U, Drexler H. Molecular Mechanisms in Heart Failure[J]. Journal of the American College of Cardiology, 2006,48(9):A56-A66.
Abe H, Semba H, Takeda N. The Roles of Hypoxia Signaling in the Pathogenesis of Cardiovascular Diseases[J]. J Atheroscler Thromb, 2017,24(9):884-894.
DOI: http://dx.doi.org/10.12345/yzlcyxzz.v7i4.17055
Refbacks
- 当前没有refback。
此作品已接受知识共享署名-非商业性使用 4.0国际许可协议的许可。