关于脓毒症相关性脑病发生发展机制的研究
摘要
关键词
全文:
PDF参考
Singer M, Deutschman S C, Seymour W C, et al. The Third
International Consensus Definitions for Sepsis and Septic Shock
(Sepsis-3)[J]. JAMA, 2016,315(8):801-810.
Koji H, Nicolas G, Fuhong S, et al. Clinical neurophysiological
assessment of sepsis-associated brain dysfunction: a systematic
review[J]. Critical care (London, England), 2014,18(6):674.
L E S, M C C, Tatiana B, et al. The septic brain[J]. Neurochemical
research, 2008,33(11):2171-2177.
Sieh J D, Siqi L, Lili L, et al. Effects of hydrogen-rich saline in
neuroinflammation and mitochondrial dysfunction in rat model
of sepsis-associated encephalopathy[J]. Journal of Translational
Medicine, 2022,20(1):546.
Pytel P, Alexander J J. Pathogenesis of septic encephalopathy[J].
Curr Opin Neurol, 2009,22(3):283-287.
董艳,刘刚,张力,等.大黄素对脓毒症小鼠急性脑损伤的神经保护
作用[J].解放军医学杂志,2019,44(1):13-19.
Qingzeng G, Sorrentino M H. Sepsis-Associated Encephalopathy
and Blood-Brain Barrier Dysfunction[J]. Inflammation,
,44(6):1-9.
朱丹丹,于健,陆莹莹.脓毒症相关性脑病的发病机制和潜在脑损
伤标志物[J].实用休克杂志(中英文),2019,3(3):171-175.
A F B, C J D, Cristiane R, et al. Bioenergetics, mitochondrial
dysfunction, and oxidative stress in the pathophysiology of septic
encephalopathy[J].Shock (Augusta, Ga.),2013,39 Suppl 1(7 Suppl
:10-16.
Shangwen P, Zheng L, Rui W, et al. Sepsis-Induced Brain
Dysfunction: Pathogenesis, Diagnosis, and Treatment[J]. Oxidative
medicine and cellular longevity, 2022,20221328729.
Integrative analysis of metabolomics and proteomics reveals amino
acid metabolism disorder in sepsis[J]. Journal of Translational
Medicine, 2022, 20(1):1-15.
李志强,周艺蕉,杨春燕.脓毒症脑病发病机制的研究进展[J].医
学综述,2021,27(19):3791-3795.
李文玉,杨洪娜,方巍,等.脓毒症相关性脑病的研究进展[J].山东
第一医科大学(山东省医学科学院)学报,2023,44(9):707-711.
Santiago S P A, Chaves A E, Oliveira F M, et al. Reactive oxygen
species generation is modulated by mitochondrial kinases:
Correlation with mitochondrial antioxidant peroxidases in rat
tissues[J]. Biochimie, 2008,90(10):1566-1577.
王诚,王昌理,薄禄龙,等.脓毒症时细胞焦亡的分子机制及研究进
展[J].实用休克杂志(中英文),2019,3(4):232-235.
Xiangtao Z, Weiwei C, Fangchen G, et al. The Role and
Mechanism of Pyroptosis and Potential Therapeutic Targets in
Sepsis: A Review[J]. Frontiers in Immunology, 2021,12711939.
Daolin T, Haichao W, R. T B, et al. Emerging mechanisms of
immunocoagulation in sepsis and septic shock[J]. Trends in
Immunology, 2021,42(6):508-522.
Yang D, He Y, Muñoz-Planillo R, et al. Caspase-11 Requires the
Pannexin-1 Channel and the Purinergic P2X7 Pore to Mediate
Pyroptosis and Endotoxic Shock[J]. Immunity,2015,43(5):923-932.
Romain S, Etienne M D, Julien P, et al. Potentially modifiable
factors contributing to sepsis-associated encephalopathy[J].
Intensive care medicine, 2017,43(8):1075-1084.
PPP, DRS, DTG, et al. Effect of dexmedetomidine versus
lorazepam on outcome in patients with sepsis: an a priori-designed
analysis of the MENDS randomized controlled trial[J]. Critical
care (London, England), 2010,14(2):R38.
隋大鸣.白藜芦醇对脓毒症相关性脑病小鼠海马的保护作用[D].
上海:第二军医大学,2015.
刘玲玲.氢气对脓毒症小鼠脑损伤的保护作用及其相关机制[D].
天津:天津医科大学,2015.
Xu X, Liu L, Wang Y, et al. Caspase-1 inhibitor exerts brainprotective effects against sepsis-associated encephalopathy and
cognitive impairments in a mouse model of sepsis[J]. Brain
Behavior and Immunity, 2019,80859-80870.
DOI: http://dx.doi.org/10.12345/yzlcyxzz.v7i5.17758
Refbacks
- 当前没有refback。
此作品已接受知识共享署名-非商业性使用 4.0国际许可协议的许可。