开放期刊系统

热休克蛋白 90(HSP90)在治疗骨质疏松中的研究进展

文娟 张(宁波大学附属第一医院药学部,中国)

摘要

热休克蛋白90(HSP90)作为一种重要的分子伴侣,在细胞的应激反应及维持蛋白质稳态中发挥着关键作用。近年来的研究表明,HSP90不仅参与了细胞应激反应的调节,还对骨代谢、骨形成及骨吸收过程产生显著影响,逐渐引起了学术界的广泛关注。尽管已有多项研究探讨了HSP90在骨质疏松中的作用,但其具体机制仍然不详,临床应用仍存在诸多未解之谜。本文旨在综述HSP90在抗骨质疏松方面的研究进展,深入探讨其潜在的作用机制以及未来的临床应用前景。相关研究表明,HSP90可能通过调节关键的信号通路和转录因子,促进骨矿化并抑制骨吸收,从而为骨质疏松的治疗提供了新的方向和思路。

关键词

热休克蛋白90,骨质疏松,骨代谢,药物作用机制

全文:

PDF PDF

参考

LIU Y, LI C, LIU H, et al. Combination therapy involving HSP90 inhibitors for combating cancer: an overview of clinical and preclinical progress [J]. Archives of pharmacal research, 2024, 47(5): 442-64.

BHATIA S, SPANIER L, BICKEL D, et al. Development of a First-in-Class Small-Molecule Inhibitor of the C-Terminal Hsp90 Dimerization [J]. ACS central science, 2022, 8(5): 636-55.

HUANG J, HUANG J, HU W, et al. Heat shock protein 90 alpha and 14-3-3η in postmenopausal osteoporotic rats with varying levels of serum FSH [J]. Climacteric : the journal of the International

Menopause Society, 2020, 23(6): 581-90.

WANG Q, KONG X, GUO W, et al. HSP90 Exacerbates Bone Destruction in Rheumatoid Arthritis by Activating TRAF6/NFATc1 Signaling [J]. Inflammation, 2024, 47(1): 363-75.

MEDIANI L, ANTONIANI F, GALLI V, et al. Hsp90-mediated regulation of DYRK3 couples stress granule disassembly and growth via mTORC1 signaling [J]. EMBO reports, 2021, 22(5): e51740.

ABU-EL-RUB E, ALZU’BI A, ALMAHASNEH F A, et al. Inhibiting HSP90 changes the expression pattern of PINK1 and BNIP3 and induces oxidative stress in colon cancer cells [J]. Molecular biology reports, 2025, 52(1): 212.

CHEN L, WANG M, LIN Z, et al. Mild microwave ablation combined with HSP90 and TGF-β1 inhibitors enhances the therapeutic effect on osteosarcoma [J]. Molecular medicine reports, 2020, 22(2): 906-14.

YOU J, LI Y, WANG C, et al. Mild Thermotherapy-Assisted GelMA/HA/MPDA@Roxadustat 3D-Printed Scaffolds with Combined Angiogenesis-Osteogenesis Functions for Bone Regeneration [J]. Advanced healthcare materials, 2024, 13(22): e2400545.

CASTRO J P, FERNANDO R, REEG S, et al. Non-enzymatic cleavage of Hsp90 by oxidative stress leads to actin aggregate formation: A novel gain-of-function mechanism [J]. Redox biology, 2019, 21: 101108.

TRAN M T, OKUSHA Y, FENG Y, et al. A novel role of HSP90 in regulating osteoclastogenesis by abrogating Rab11b-driven transport [J]. Biochimica et biophysica acta Molecular cell research, 2021, 1868(10): 119096.

VAN OOSTEN-HAWLE P. Organismal Roles of Hsp90 [J]. Biomolecules, 2023, 13(2).

SUN Y, CHEN R, ZHU D, et al. Osteoking improves OP rat by enhancing HSP90-β expression [J]. International journal of molecular medicine, 2020, 45(5): 1543-53.

ZHANG K, WANG M, LI Y, et al. The PERK-EIF2α-ATF4 signaling branch regulates osteoblast differentiation and proliferation by PTH [J]. American journal of physiology Endocrinology and metabolism, 2019, 316(4): E590-e604.

WHITELAW M L, MCGUIRE J, PICARD D, et al. Heat shock protein hsp90 regulates dioxin receptor function in vivo [J]. Proceedings of the National Academy of Sciences of the United States of America, 1995, 92(10): 4437-41.

HUANG J, ZHANG Z, HE P, et al. Possible mechanisms underlying the regulation of postmenopausal osteoporosis by follicle-stimulating hormone [J]. Heliyon, 2024, 10(15): e35405.

ROE S M, ALI M M, MEYER P, et al. The Mechanism of Hsp90 regulation by the protein kinase-specific cochaperone p50(cdc37) [J]. Cell, 2004, 116(1): 87-98.

ZHAN Q Y, XIE L X, WANG C. [Promoting critical care system and capacity building in pulmonary and critical care medicine subspecialties] [J]. Zhonghua yi xue za zhi, 2023, 103(40): 3149-51.

CHIOSIS G, DIGWAL C S, TREPEL J B, et al. Structural and functional complexity of HSP90 in cellular homeostasis and disease [J]. Nature reviews Molecular cell biology, 2023, 24(11): 797-815.

LI J, BUCHNER J. Structure, function and regulation of the hsp90 machinery [J]. Biomedical journal, 2013, 36(3): 106-17.

CHAUDHURY S, NARASIMHARAO MEKA P, BANERJEE M, et al. Structure-Based Design, Synthesis, and Biological Evaluation of Hsp90β-Selective Inhibitors [J]. Chemistry (Weinheim an der Bergstrasse, Germany), 2021, 27(59): 14747-64.

ZHOU H, GUL Y, HAMEED Y, et al. Unveiling the unexplored novel signatures for osteoporosis via a detailed bioinformatics and molecular

experiments based approach [J]. American journal of translational research, 2024, 16(4): 1306-21.

IYER G, MORRIS M J, RATHKOPF D, et al. A phase I trial of docetaxel and pulse-dose 17-allylamino-17-demethoxygeldanamycin in adult patients with solid tumors [J]. Cancer chemotherapy and pharmacology, 2012, 69(4): 1089-97.

LAVERY L A, PARTRIDGE J R, RAMELOT T A, et al. Structural asymmetry in the closed state of mitochondrial Hsp90 (TRAP1) supports a two-step ATP hydrolysis mechanism [J]. Molecular cell, 2014, 53(2): 330-43.

WELCH W J. Mammalian stress response: cell physiology, structure/function of stress proteins, and implications for medicine and disease [J]. Physiological reviews, 1992, 72(4): 1063-81.



DOI: http://dx.doi.org/10.12345/yzlcyxzz.v8i4.25544

Refbacks

  • 当前没有refback。
版权所有(c)2025 文娟 张 Creative Commons License
此作品已接受知识共享署名-非商业性使用 4.0国际许可协议的许可。
  • :+65-62233778 QQ:2249355960 :contact@s-p.sg