脊索瘤分子信号通路的进展研究
摘要
关键词
全文:
PDF (English)参考
Walcott, B.P., et al., Chordoma: current concepts, management, and future directions[J]. Lancet Oncol, 2012(02)69-76.
Stacchiotti, S., et al., Chordoma of the mobile spine and sacrum: a retrospective analysis of a series of patients surgically treated at two referral centers[J]. Ann Surg Oncol, 2010(01):211-219.
Chambers, K.J., et al., Incidence and survival patterns of cranial chordoma in the United States. Laryngoscope, 2014(05):1097-1102.
Hao, S., et al., Protein phosphatase 2A inhibition enhances radiation sensitivity and reduces tumor growth in chordoma[J]. Neuro Oncol, 2018(06):799-809.
McMaster, M.L., et al., Chordoma: incidence and survival patterns in the United States, 1973-1995[J]. Cancer Causes Control, 2001(01):1-11.
Hu, W., et al., Lymphocyte-Related Inflammation and Immune-Based Scores Predict Prognosis of Chordoma Patients After Radical Resection[J]. Transl Oncol, 2018(02):444-449.
Barresi, V., et al., Brachyury: a diagnostic marker for the differential diagnosis of chordoma and hemangioblastoma versus neoplastic histological mimickers[J]. Dis Markers, 2014(13):514753.
Kispert, A. and B.G. Herrmann, Immunohistochemical analysis of the Brachyury protein in wild-type and mutant mouse embryos[J]. Dev Biol, 1994(01):179-193.
Otani, R., et al., Brachyury gene copy number gain and activation of the PI3K/Akt pathway: association with upregulation of oncogenic Brachyury expression in skull base chordoma[J]. J Neurosurg, 2018(05):1428-1437.
Yan, X., et al., Inhibition Of Glycogen Synthase Kinase 3 Beta Suppresses The Growth And Survival Of Skull Base Chordoma Cells By Downregulating Brachyury Expression[J]. Onco Targets Ther, 2019(12):9783-9791.
Vujovic, S., et al., Brachyury, a crucial regulator of notochordal development, is a novel biomarker for chordomas[J]. J Pathol, 2006(02):157-165.
Hu, Y., et al., Liposome-Protamine-DNA Nanoparticle-Mediated Delivery of Short Hairpin RNA Targeting Brachyury Inhibits Chordoma Cell Growth[J]. J Biomed Nanotechnol, 2016(10):1952-1961.
Gill, C.M., M. Fowkes, and R.K. Shrivastava, Emerging Therapeutic Targets in Chordomas: A Review of the Literature in the Genomic Era[J]. Neurosurgery, 2020(02):118-123.
Bowles, J., G. Schepers, and P. Koopman, Phylogeny of the SOX family of developmental transcription factors based on sequence and structural indicators[J]. Dev Biol, 2000(02):239-255.
Castillo, S.D. and M. Sanchez-Cespedes, The SOX family of genes in cancer development: biological relevance and opportunities for therapy[J]. Expert Opin Ther Targets, 2012(09):903-919.
Akiyama, H., et al., The transcription factor Sox9 has essential roles in successive steps of the chondrocyte differentiation pathway and is required for expression of Sox5 and Sox6[J]. Genes Dev, 2002(21):2813-2828.
Guo, W., et al., Slug and Sox9 cooperatively determine the mammary stem cell state[J]. Cell, 2012()5):1015-1028.
Blache, P., et al., SOX9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes[J]. J Cell Biol, 2004(01):37-47.
Vidal, V.P., et al., Sox9 is essential for outer root sheath differentiation and the formation of the hair stem cell compartment[J]. Curr Biol, 2005(15):1340-1351.
Song, S., et al., Loss of TGF-beta adaptor beta2SP activates notchsignaling and SOX9 expression in esophageal adenocarcinoma[J]. Cancer Res, 2013(07):2159-2169.
Ling, S., et al., An EGFR-ERK-SOX9 signaling cascade links urothelial development and regeneration to cancer[J]. Cancer Res, 2011(11):3812-3821.
Sun, L., et al., Epigenetic regulation of SOX9 by the NF-kappaB signaling pathway in pancreatic cancer stem cells[J]. Stem Cells, 2013(08):1454-1466.
Chen, H., et al., Expression and Therapeutic Potential of SOX9 in Chordoma[J]. Clin Cancer Res, 2017(17):5176-5186.
Jaiswal, P.K., A. Goel, and R.D. Mittal, Survivin: A molecular biomarker in cancer[J]. Indian J Med Res, 2015(04):389-397.
Ambrosini, G., C. Adida, and D.C. Altieri, A novel anti-apoptosis gene, survivin, expressed in cancer and lymphoma[J]. Nat Med, 1997(08):917-921.
Chen, C., et al., High expression of survivin in sacral chordoma[J]. Med Oncol, 2013(02):529.
Froehlich, E.V., et al., Examination of survivin expression in 50 chordoma specimens--A histological and in vitro study[J]. J Orthop Res, 2015(05):771-778.
Duan, Z., et al., Differential expression of microRNA (miRNA) in chordoma reveals a role for miRNA-1 in Met expression[J]. J Orthop Res, 2010(06):746-752.
Duan, Z., et al., Prognostic significance of miRNA-1 (miR-1) expression in patients with chordoma[J]. J Orthop Res, 2014(05):695-701.
Osaka, E., et al., MicroRNA-1 (miR-1) inhibits chordoma cell migration and invasion by targeting slug[J]. J Orthop Res, 2014(08):1075-1082.
Gulluoglu, S., et al., The potential function of microRNA in chordomas[J]. Gene, 2016(01):76-83.
Bydon, M., et al., Novel therapeutic targets in chordoma[J]. Expert Opin Ther Targets, 2012(11):1139-1143.
Calin, G.A. and C.M. Croce, MicroRNA signatures in human cancers[J]. Nat Rev Cancer, 2006(11):857-866.
Bader, A.G., et al., Developing therapeutic microRNAs for cancer[J]. Gene Ther, 2011(12):1121-1126.
Zou, M.X., et al., Identification of miR-140-3p as a marker associated with poor prognosis in spinal chordoma[J]. Int J Clin Exp Pathol, 2014(08):4877-4885.
Choi, P.J., R.J. Oskouian, and R.S. Tubbs, The Current Understanding of MicroRNA’s Therapeutic, Diagnostic, and Prognostic Role in Chordomas: A Review of the Literature[J]. Cureus, 2018(12):3772.
Bayrak, O.F., et al., MicroRNA expression profiling reveals the potential function of microRNA-31 in chordomas. J Neurooncol, 2013(02):143-151.
Zou, M.X., et al., Reduced expression of miRNA-1237-3p associated with poor survival of spinal chordoma patients[J]. Eur Spine J, 2015(08):1738-1746.
Skowronski, K., et al., Genome-wide analysis in human colorectal cancer cells reveals ischemia-mediated expression of motility genes via DNA hypomethylation[J]. PLoS One, 2014(07):103243.
Rinner, B., et al., Chordoma characterization of significant changes of the DNA methylation pattern[J]. PLoS One, 2013(03):56609.
Marucci, G., et al., MGMT promoter methylation status in clival chordoma[J]. J Neurooncol, 2014(02):271-276.
Alholle, A., et al., Genome-wide DNA methylation profiling of recurrent and non-recurrent chordomas[J]. Epigenetics, 2015(03):213-220.
Scheipl, S., et al., Histone deacetylase inhibitors as potential therapeutic approaches for chordoma: an immunohistochemical and functional analysis[J]. J Orthop Res, 2013(12):1999-2005.
DOI: http://dx.doi.org/10.26549/yzlcyxzz.v3i6.5846
Refbacks
- 当前没有refback。
此作品已接受知识共享署名-非商业性使用 4.0国际许可协议的许可。