连续臂丛神经阻滞在皮瓣移植缺血再灌注损伤中的作用
摘要
关键词
全文:
PDF (English)参考
Kerrigan C L, Stotland M A. Ischemia reperfusion injury: a review[J]. Microsurgery, 1993, 14(3): 165-175.
Carden D L, Granger D N. Pathophysiology of ischaemia–reperfusion injury[J]. The Journal of pathology, 2000, 190(3): 255-266.
Raedschelders K, Ansley D M, Chen D D Y. The cellular and molecular origin of reactive oxygen species generation during myocardial ischemia and reperfusion[J]. Pharmacology & therapeutics, 2012, 133(2): 230-255.
Downey J M. Free radicals and their involvement during long-term myocardial ischemia and reperfusion[J]. Annual review of physiology, 1990, 52(1): 487-504.
Weyker P D, Webb C A J, Kiamanesh D, et al. Lung ischemia reperfusion injury: a bench-to-bedside review[J].Seminars in cardiothoracic and vascular anesthesia. Sage CA: Los Angeles, CA: SAGE Publications, 2013, 17(1): 28-43.
Jung J E, Kim G S, Chen H, et al. Reperfusion and neurovascular dysfunction in stroke: from basic mechanisms to potential strategies for neuroprotection[J]. Molecular neurobiology, 2010, 41(2): 172-179.
Snoeijs M G J, van Heurn L W E, Buurman W A. Biological modulation of renal ischemia–reperfusion injury[J]. Current opinion in organ transplantation, 2010,15(2): 190-199.
Neary P, Redmond H P. Ischaemia-reperfusion injury and the systemic inflammatory response syndrome[J]. Ischaemia-reperfusion injury, 1999(08): 123-136.
Kaminski K A, Bonda T A, Korecki J, et al. Oxidative stress and neutrophil activation—the two keystones of ischemia/reperfusion injury[J]. International journal of cardiology, 2002, 86(1): 41-59.
Berry C E, Hare J M. Xanthine oxidoreductase and cardiovascular disease: molecular mechanisms and pathophysiological implications[J]. The Journal of physiology, 2004, 555(3): 589-606.
Serrano-Mollar A, Closa D. Arachidonic acid signaling in pathogenesis of allergy: therapeutic implications[J]. Current Drug Targets-Inflammation & Allergy, 2005(02): 151-155.
Yang S, Lian G. ROS and diseases: Role in metabolism and energy supply[J]. Molecular and cellular biochemistry, 2019(05):1-12.
Springer T A. Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm[J]. Cell, 1994, 76(2): 301-314.
Sadik C D, Kim N D, Luster A D. Neutrophils cascading their way to inflammation[J]. Trends in immunology, 2011, 32(10): 452-460.
Rossaint J, Margraf A, Zarbock A. Role of platelets in leukocyte recruitment and resolution of inflammation[J]. Frontiers in immunology, 2018(09): 2712.
Duann P, Datta P K, Pan C, et al. Superoxide dismutase mimetic preserves the glomerular capillary permeability barrier to protein[J]. Journal of pharmacology and experimental therapeutics, 2006, 316(3): 1249-1254.
Li C, Jackson R M. Reactive species mechanisms of cellular hypoxia-reoxygenation injury[J]. American Journal of Physiology-Cell Physiology, 2002, 282(2):227-241.
Tsikas D. Assessment of lipid peroxidation by measuring malondialdehyde (MDA) and relatives in biological samples: Analytical and biological challenges[J]. Analytical biochemistry, 2017, 524(08): 13-30.
Li L, Zhao Y, Guo L, et al. Ultrasound guidance enhances the efficiency of brachial plexus block and ameliorates the vascular injury compared with nerve stimulator guidance in hand surgery patients[J]. Journal of Investigative Surgery, 2020, 33(6): 530-535.
Cho S, Kim Y J, Baik H J, et al. Comparison of ultrasound-guided axillary brachial plexus block techniques: perineural injection versus single or double perivascular infiltration[J]. Yonsei medical journal, 2015, 56(3): 838.
Kumari P, Kumar A, Sinha C, et al. Ultrasound-guided continuous costoclavicular brachial plexus block[J]. Indian Journal of Anaesthesia, 2020, 64(7): 637.
DOI: http://dx.doi.org/10.26549/yzlcyxzz.v4i4.7084
Refbacks
- 当前没有refback。
此作品已接受知识共享署名-非商业性使用 4.0国际许可协议的许可。