基于差分进化的可见—红外行人目标检测诱骗
摘要
关键词
全文:
PDF参考
Meiyan D. Mobile payment recognition technology based on face detection algorithm: Mobile Payment Recognition Technology[J]. Concurrency and Computation Practice and Experience, 2018, 30:e4655.
Badue C, Guidolini R, Carneiro R V, et al. Self-driving cars: A survey[J]. Pergamon, 2021.
Redmon J, Farhadi A. 2017. YOLO9000: Better,Faster, Stronger. In 2017 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, Honolulu, HI, USA, July 21-26, 2017, 6517–6525. IEEE Computer Society.
A S B, A P K R M, B Q V P, et al. Deep learning and medical image processing for coronavirus (COVID-19) pandemic: A survey[J].Sustainable Cities and Society, 2020.表 1 对抗样本的数量在可见光和红外目标检测器下的攻击效果模态评估准则n1234可见光AP(%)85.952.653.059.7ASR(%)22.350.150.856.1红外AP(%)93.679.675.266.5ASR(%)11.233.339.552.3表 2 对抗样本占目标比例的大小对可见光和红外目标检测器的攻击效果模态评估准则size(%)0.200.220.240.260.280.30可见光AP(%)88.472.973.052.654.460.2ASR(%)22.843.244.550.154.056.2红外AP(%)85.088.073.079.685.880.6ASR(%)20.120.723.333.325.629.2图 3 对抗样本在可见光和红外条件下的攻击效果图
Goodfellow I J, Shlens J, Szegedy C. Explaining and Harnessing Adversarial Examples[J].Computer Science, 2014.
Goodfellow I J, Shlens J, Szegedy C. Explaining and harnessing adversarial examples. In Proceedings of the 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),2015:27-36.
Carlini N, Wagner D. Towards evaluating the robustness of neural networks. In Proceedings of the 2017 IEEE Symposium on Security and Privacy (SP),2017: 39-57.
Madry A, Makelov A, Schmidt L, et al. Towards deep learning models resistant to adversarial attacks. In International Conference on Learning Representations (ICLR), 2018.
Zhu X, Hu Z, Huang S, et al. Infrared invisible clothing: Hiding from infrared detectors at multiple angles in real world. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, 2022.
Zhu X, Li X, Li J, et al. Fooling thermal infrared pedestrian detectors in real world using small bulbs. In: Proceedings of the AAAI Conference on Artificial Intelligence, 2021.
Zhu X, Liu Y, Hu Z, et al. Infrared Adversarial Car Stickers[J]. IEEE, 2024.
Wei X, Yu J, Huang Y. Infrared Adversarial Patches with Learnable Shapes and Locations in the Physical World[J].International Journal of Computer Vision, 2024, 132(6):1928-1944.
Hwang S, Park J, Kim N, et al. Multispectral pedestrian detection: Benchmark dataset and baseline. In Proceedings of the IEEE conference on computer vision and pattern recognition, 2015:1037-1045.
Kim T, Yu Y, Ro Y M. Multispectral Invisible Coating: Laminated Visible-Thermal Physical Attack against Multispectral Object Detectors Using Transparent Low-E Films[J]. Proceedings of the AAAI Conference on Artificial Intelligence, 2023,37(1):1151-1159.
Winckler L. Low-Emissivity, Energy-Control, Retroft Window Film. Technical report, Cpflms Incorporated, Fieldale, VA (United States),2012.
Wei X, Huang Y, Sun Y, et al. Unified Adversarial Patch for Cross-modal Attacks in the Physical World[J]. 2023 IEEE/CVF International Conference on Computer Vision (ICCV), 2023:4422-4431.
Hu C, Shi W. (2023). Two-stage optimized unified adversarial patch for attacking visible-infrared cross-modal detectors in the physical world. ArXiv, abs/2312.01789.
Price K V. Differential evolution[M]. Handbook of Optimization. Springer, Berlin, Heidelberg, 2013.
Jia X, Zhu C, Li M, et al. LLVIP: A visible-infrared paired dataset for low-light vision[C]//Proceedings of the IEEE/CVF international conference on computer vision, 2021:3496-3504.
Jocher G, Chaurasia A, Stoken A, et al. ultralytics/yolov5: v6. 2-yolov5 classification models, apple m1, reproducibility, clearml and deci. ai integrations[J]. Zenodo, 2022.
DOI: http://dx.doi.org/10.12345/bdai.v5i8.20942
Refbacks
- 当前没有refback。
此作品已接受知识共享署名-非商业性使用 4.0国际许可协议的许可。