Open Journal Systems

Investigation of the Impact of Calcinations Temperature on the Properties of Ba Doped HfO2 Nano-rods

J. Manikantan(Sri Ranganathar Institute of Engineering and Technology, Coimbatore, Tamilnadu)
H. B. Ramalingam(Department of Physics, Government Arts College, Udumalpet, Tamilnadu)
B. Chandar Shekar(Nanotechnology Research Lab, Kongunadu College of Arts and Science, Coimbatore, Tamilnadu)


Barium doped hafnium oxide nanoparticles were synthesized by an easy co-precipitation method. FTIR analysis and EDX investigation shows the purity and stoichiometric composition of hafnium oxide nanoparticles. XRD investigation exhibit the as synthesized nanoparticles are amorphous in nature and calcined barium doped hafnium oxide nanoparticles have the monoclinic phase structure with the mean crystallite size was around 15 nm. TEM analysis shows the development of crystalline Nano-rods. The Nano-rod formations signify the possibility of its use in applications of sensor. Ultra violet visible spectroscopy investigation shows that the band gap of the nanoparticles is noticed between 5.4 -5.14 eV. The visible and NIR of barium doped hafnium oxide nanoparticles indicated high reflectance, which may possibly be employ as an antireflection coating in solar cells applications and high absorbance ultra violet region signify the viability of make use of the prepared nanoparticles  could be used in Opto-electronic device applications.


Co-precipitation; Ba-HfO2 NPs; Nano-rods; XRD; Optical materials

Full Text:



M. Noor-A-Alam, C.V.Ramana, Ceram. Int. 38 (2012) 2957–2961.

J. Cho, N.V.Nguyen, C.A.Ritcher, et al.Appl. Phys. Lett. 80 (2002) 1249–1251.

X. Hong, K.Zou, A.M.DaSilva, et al.Solid State Commun.152 (2012) 1365–1374.

G. He, L.D. Zhang, G.H. Li, et al,Appl. Phys. Lett.86 (2005), 232901-1–232901-3.

M.F. Al-Kuhali, Opt. Mater., 27, (2004) 383–387.

C. Suryanarayana, Bull. Mater. Sci., 17 (1994) 307–346.

A.Lauria, I. Villa, M. Fasoli, et al, ACS Nano 7 (8) (2013) 7041–7052.

E. Rauwel, A. Galeckas and P. Rauwel, Mater.Res. Express 1 (2014) 015035.

T. L. McGinnity, O. Dominguez, T. E. Curtis, et al.Nanoscale, 8 (2016) 13627–13637.

T. S. N. Sales, F. H. M. Cavalcante, B. Bosch-Santos, et al.AIP Adv. 7 (2017) 056315.

X. Liu, Y. Chen, L. Wang, et al.J. Appl. Phys. 113 (2013) 076102.

V. Jayaraman, G. Bhavesh, S. Chinnathambi, et al.Mater. Express, 4 (5) (2014) 375-383.

V. Jayaraman, S. Sagadevan and R. Sudhakar, J. Electron. Mater.46 (3) (2017) 1-6 DOI: 10.1007/s11664-017-5432-x.

T. Chen, H. Wang, T. Zhang, et al.Ceram. Int. 40 (2014) 2959-2963.

Z. D. D. Mitrovic, N.Paunovic, B.Matovic, et al.Ceram. Int. 41(2015) 6970–6977.

B. Matovicn, J. Pantic, J. Lukovic, et al.Ceram. Int. 42 (2016) 615-620.

M. Karmaoui, V. Ramana, D. M. Tobaldi, et al.RSC Adv., (2016), DOI: 10.1039/C6RA06990H.

T. Tan, T. Guo, Z. Liu, J. Alloys Compd. 610 (2014) 388–391.

J.H. Choi, Y. Mao, J.P. Chang, Mater. Sci. Eng., R 72 (2011) 97–136

M.Y. Ho, H. Gong, G.D. Wilk, et al.J. Appl. Phys. 93 (2003) 1477.

A. Ramadoss, K. Krisnamoorthy, S.J. Kim, Mater.Lett. 75 (2012) 215–217.

T. Kidchob, L. Malfatti, F. Serra, et al.J. Sol–Gel Sci.Technol.42 (2007) 89–93.

A. Ramadoss, K. krishnamoorthy, S.J. Kim, Mater.Res. Bull. 47 (2012) 2680 – 2684.

A. Ramadoss, S.J. Kim, J. Alloys Compd.544 (2012) 115–119.

H. Padma Kumara, S. Vidya, S. Saravana Kumar, et al.J. Asian Ceram. Soc. 3 (2015) 64-69

J. Manikantan, H.B. Ramalingam, B. Chandar Shekar, et al.Mater. Lett. 186 (2017) 42–44



  • There are currently no refbacks.
Copyright © 2018 J. Manikantan, H. B. Ramalingam, B. Chandar Shekar Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
  • :+65-98550280 QQ:2249355960